
GridAPPS-D Documentation
Release 1.0

The GridAPPS-D Team

Mar 30, 2020

Contents

1 Overview 3
1.1 Conceptual Design Summary . 3
1.2 Architecture . 3
1.3 Definition of Terms . 5
1.4 References . 5
1.5 Release History . 5
1.6 Contact Us . 20

2 Installing GridAPPS-D 21
2.1 Requirements . 21
2.2 Docker and prerequisite install on OS X . 21
2.3 Clone or download the repository . 21
2.4 Install Docker on Ubuntu . 21
2.5 Start the docker container services . 22
2.6 Start gridappsd . 22
2.7 Exiting the container and stopping the containers . 22
2.8 Restarting the containers . 22

3 Using GridAPPS-D 23
3.1 Start GridAPPS-D platform . 23
3.2 Start a Simulation . 23
3.3 Stop GridAPPS-D platform . 25
3.4 Adding Events . 26
3.5 Uploading Model into Blazegraph . 27
3.6 Inserting Measurements into Blazegraph . 27
3.7 Using Platform API . 28
3.8 Powergrid Model API . 28
3.9 Configuration File API . 35
3.10 Logging API . 41
3.11 Simulation API . 43
3.12 Timeseries API . 46
3.13 Services . 50
3.14 Hosting Application . 51

4 System Configurations 55

5 GridAPPS-D Development Resources 57

i

5.1 Design . 57
5.2 Eclipse IDE Setup . 58
5.3 Execution Workflow . 59
5.4 CIM Documentation . 60
5.5 Platform UML Diagrams . 97
5.6 CIM Validation . 107

6 Data Model 111
6.1 IEEE 8500-Node Test Feeder . 111

7 Integrated Applications 113
7.1 Volt-var Optimization (VVO) . 113
7.2 Visualization . 113
7.3 State Estimator Service . 113
7.4 Model Validation Application . 118
7.5 Transactive Systems Application . 120
7.6 Distribution Optimal Power Flow for Real-Time Setpoint Dispatch 122
7.7 Short-Term Grid Forecasting . 124
7.8 Solar Forecasting Application . 125

8 API Documentation 127
8.1 GridAPPS-D . 127
8.2 GOSS . 127
8.3 FNCS . 127
8.4 VVO . 127
8.5 GridLAB-D . 127
8.6 gov.pnnl.gridlabd.cim . 127

9 License 149

10 Indices and tables 151

Bibliography 153

Index 155

ii

GridAPPS-D Documentation, Release 1.0

Contents 1

GridAPPS-D Documentation, Release 1.0

2 Contents

CHAPTER 1

Overview

Through a series of industry centric meetings and workshops, the U.S. Department of Energy Office of Electricity
Delivery and Energy Reliability (DOE-OE) gathered input from utilities throughout the United States on their experi-
ences in implementing, or planning to implement, ADMS. The results of these meetings are documented in a February
2015 report titled Voices of Experience: Insights into Advanced Distribution Management Systems.

The report documents the potential benefits to utilities in implementing ADMS applications, and underscores the
need for more affordability, a timely path for deploying ADMS, and the development and deployment of ADMS
applications. The high cost and amount of time required for ADMS deployment and application development was
highlighted.

In response to these needs, DOE-OE has established an ADMS program with this project specifically tasked with
developing an open-source, standards based ADMS application development platform - GridAPPS-D.

1.1 Conceptual Design Summary

A conceptual design for GridAPPS-D was created at the beginning of the project. The conceptual design is summarized
below. The full design document may be downloaded from this link - GridAPPS-D Conceptual Design

This document provides a high level, conceptual view of the platform and provides related background and contextual
information. This document is intended to both educate readers about the technical work of the project and to serve as
a point of reference for the project team. The document will be updated as the project progresses.

1.2 Architecture

A conceptual architecture for the system has five key functional elements as shown in Figure 1:

1. Tools help developers enhance the functionality of their applications. Examples might include off-line power
flow, optimization tool boxes, state estimators, statistical processing, etc.

2. I/O allows convenient access to the power system model and data through standards-based queries and mes-
sages. Conversely, applications can send control signals to the simulator using standard message schemas.

3

https://www.smartgrid.gov/files/ADMS-Guide_2-11.2015.pdf
http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-26340.pdf

GridAPPS-D Documentation, Release 1.0

3. Development utilities include loggers, debuggers, access control, test managers, user interface toolkits, and
other application support functions.

4. Data bus is based on industry standards like IEC 61968 and 61970 (i.e. the Common Information Model), plus
more to be identified.

5. Distribution simulator represents the power system operating in real time. Initially, this will be GridLAB-D,
but future versions may include EPRI’s OpenDSS, ns-3 for communications, and other federated co-simulators.

Figure 1 also shows the relationships between GridAPPS-D, the ADMS application developer and commercial tools.
Two different classes of data flow are shown:

1. Control and configuration data are shown with dashed lines; this allows the application developer to manage the
platform.

2. Data flowing as a part of an application are shown with solid lines.

For more detailed information about the architecture and design, see UML from the Functional Specification

Figure 1: GridAPPS-D provides a method for developers (top) to run their new applications on a real-time simulator
with extensive modeling and tool support (heavy box). GridAPPS-D is built around standard data models like the CIM
(center). It readily interfaces to existing software products (right), which may also 1) use components of GridAPPS-D

4 Chapter 1. Overview

GridAPPS-D Documentation, Release 1.0

and 2) supplement or replace the built-in distribution simulator (bottom), facilitating the deployment of new ADMS
applications to existing software products.

1.3 Definition of Terms

Process Manager - Process Manager keeps track of all the processes running on the platform. These processes may
include simulators, requests, applications and other managers. It is also the starting point for a request received by the
platform.

Configuration Manager - It receives simulation configuration request from Process Manager and parses it to build the
necessary configuration files.

Data Manager - The data manager accesses the database to build the model files used by the simulator.

Simulation Manager - The simulation manager launches the simulator and other required applications such as the
FNCS bridge, FNCS, and the VoltVar application. It is in charge of managing the timing of the simulation and
reporting output from the simulation out to the simulation status topic.

FNCS-GOSS Bridge - Serves as a bridge between FNCS and Simulation Manager.

FNCS - FNCS is a network co-simulator used to communicate between simulator and FNCS-GOSS bridge

Platform - Refers to GridAPPS-D platform.

RC1 - Release Cycle 1.

Simulation - A real world distribution system currently done by GridLAB-D

Simulator - In current release GridLAB-D serves as the simulator.

VoltVar Application -

Vizualization - A web-based visualization application is developed in RC1 to view power system model with real time
values from simulation result.

GOSS - Grid Optics Software System is a middleware architecture designed as a prototype future data analytics and
integration platform

GridLAB-D - GridLAB-D is a distribution level powerflow simulator. It acts as the real world distribution system in
GridAPPS-D.

Power System Model - IEEE 8500 model is used in RC1.

Model - See Power System Model

CIM - Common Information Model is a standard for representing electrical network and exchange information.

1.4 References

1.5 Release History

1.5.1 Version: Release Cycle 1 (RC1)

Release Date: May 2017

Version description: This is the first version for internal release of GridAPPS-D platform. This is not ready for public
use yet.

Functional requirements covered in this release:

1.3. Definition of Terms 5

GridAPPS-D Documentation, Release 1.0

• 102/202 Command Interface

• 301 Real-time Simulation Data

• 310 Hosted Application, but short-cutting the registration process (partial)

• 401 Distribution Co-Simulator (partial)

• 402 Process Manager (partial)

• 404 Data Manager (partial)

• 405 Simulation Manager (partial)

• 406 Power System Model Manager (partial)

• 413 Platform Manager (encapsulating 401 and 403-406)

1.5.2 Version: 2019.01.0

Release Date: January 2019

GridAPPS-D v2019.01.0 release contains following features/updates:

1. Platform updates:

• Simulation can run as fast as possible as well as real-time (every 3 seconds)

• Simulation can run with houses if present in the model.

• Following components can be controlled while the simulation is running:

– Open or close capacitors

– Open or close switches

– Change tap setting for regulators

– Changing control modes for regulators

– Change inverter P & Q output

– Set control modes for regulators and capacitors

• Simulation request creates the input weather file.

• gridappsd-python:

– (@Craig: list out updates here)

• cim2glm:

– Optional house cooling load components

• Single-phase power electronics and fuse ratings

• Inverter parameters changed from rotating machines to power electronics

• Solar and storage

• Measurements exported to the circuit metadata (JSON file); SimObject identifies the corresponding
GridLAB-D object

• Supplemental scripts to populate feeder with measurements and houses

• Rotating machines, only parameters essential for the UAF lab microgrid

• In GridLAB-D export of loads, each node or triplex_node will have separate submeters for houses, PV
inverters, battery inverters and rotating machines, i.e., not patterned after net metering

6 Chapter 1. Overview

GridAPPS-D Documentation, Release 1.0

2. Data updates:

2.1 Power grid models:

• Power grid models are stored in blazegraph database in its own docker container.

• Following models are pre-loaded

– EPRI_DPV_J1

– IEEE123

– IEEE13

– R2_12_47_2

– IEEE8500

– IEEE123_pv

• User can upload customized model (@Tara: attach readthedocs link)

2.2 Weather:

• Weather data in stored in InfluxDB using Proven.

• InfluxDB has its own docker container with pre-loaded weather data.

• API added to query weather data.

• Feature added to create weather file for a simulation

• Details of pre-loaded weather data in current release: (@Eric: meta-data details please)

2.3 Simulation Input

• Simulation input commands sent by applications/services are stored in InfluxDB using Proven.

• API added to query input data.

2.4 Simulation Output

• Output from simulator is stored in InfluxDB using Proven.

• API added to query output data.

2.5 Logs

• API added for query based on pre-defined filters or custom SQL string.

• Changed logs to have epoch time format.

3. Applications and Services:

3.1 Viz

• User can select to run simulation at real-time or as fast as possible

• User can select to add houses in the simulation

• User can open or close switches and capacitors by clocking on them

• Cleaner display of log messages while simulation is running

• User can query simulation logs after simulation is done.

• Toggle switches open/close

• Querying logs through Viz (still working on this)

• Bug fixes

1.5. Release History 7

GridAPPS-D Documentation, Release 1.0

– fixed the stomp client in Viz,

– added missing capacitor labels

– redirect non-root urls to root (localhost:8080)

3.2 Sample application: (@Craig/Andy: please review/add)

• Source code at https://github.com/GRIDAPPSD/gridappsd-sample-app

• Sample app runs in its own container

• Register with gridapps-d platform when platform start.

• Re-register automatically if platform restart.

• Redundant log messages removed.

• Works with user selected model instead of hard-coded ones.

3.3 State Estimator (TODO: @Andrew)

3.4 RDRD(WSU) (TODO: @Anamika/Shiva)

3.5 DER Dispatch (@TODO: @Jeff)

3.6 VVO (@TODO: @Brandon)

5. Source Code:

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.01.0

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.01.0

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.01.0

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

• proven-cluster - https://github.com/pnnl/proven-cluster (@Eric: link for release branches)

• proven-docker - https://github.com/GRIDAPPSD/proven-docker

• proven-client - https://github.com/pnnl/proven-client

• proven-message - https://github.com/pnnl/proven-message

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.01.0

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

• sample-app https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.01.0

6. Docker Container:

GridAPPS-D creates and starts following docker containers:

• gridappsd/gridappsd:2019.01.0 - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.01.0

– proven-client - https://github.com/pnnl/proven-client

– cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

– gridappsd/gridappsd-base:master - https://github.com/GRIDAPPSD/gridappsd-docker-
build/tree/releases/2019.01.0

– zeromq - http://download.zeromq.org/zeromq-4.0.2.tar.gz

– zeromq_czmq - https://archive.org/download/zeromq_czmq_3.0.2/czmq-3.0.2.tar.gz

8 Chapter 1. Overview

https://github.com/GRIDAPPSD/gridappsd-sample-app
https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.01.0
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.01.0
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.01.0
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0
https://github.com/pnnl/proven-cluster
https://github.com/GRIDAPPSD/proven-docker
https://github.com/pnnl/proven-client
https://github.com/pnnl/proven-message
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.01.0
https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.01.0
https://github.com/pnnl/proven-client
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0
http://download.zeromq.org/zeromq-4.0.2.tar.gz
https://archive.org/download/zeromq_czmq_3.0.2/czmq-3.0.2.tar.gz

GridAPPS-D Documentation, Release 1.0

– activemq - http://mirror.olnevhost.net/pub/apache/activemq/activemq-cpp/3.9.4/
activemq-cpp-library-3.9.4-src.tar.gz

– fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

– gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

• gridappsd/influxdb:2019.01.0 - https://github.com/GRIDAPPSD/gridappsd-data/tree/releases/2019.01.0

– influxdb:latest - https://hub.docker.com/_/influxdb

• gridappsd/blazegraph - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

– lyrasis/lbazegraph:2.1.4 - https://hub.docker.com/r/lyrasis/blazegraph

• gridappsd/proven - https://github.com/GRIDAPPSD/proven-docker

– proven-cluster - https://github.com/pnnl/proven-cluster/tree/v1.3.3

– proven-message - https://github.com/pnnl/proven-message/tree/v1.3.1

• gridappsd/sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.01.0

– gridappsd/app-container-base - (TODO: @Craig can you provide the repository?)

• gridappsd/viz:2019.01.0 - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.01.0

• redis:3.2.11-alpine - https://hub.docker.com/_/redis

• mysql/mysql-server:5.7 - https://hub.docker.com/_/mysql

1.5.3 Version: 2019.02.0

Release Date: Feb 2019

1. Fixed Bugs:

• PROVEN - It can now store simulation input and output which can scale for IEEE8500 model.

• PROVEN - It can store data with real-time simulation run.

• PROVEN - Increased max data limit to unlimited.

• FNCS Goss Bridge - Corrected the timestamp format in simulation logs.

2. New Features:

• Viz - User can query log data from MySQL using Viz menu.

• Viz - Added menu to operate switches.

• FNCS GOSS bridge can do execute pause, resume and stop operations for simulation.

• Update PROVEN docker container for automated builds.

3. Source Code:

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.02.0

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.02.0

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.02.0

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.02.0

• proven-cluster - 1.3.4 https://github.com/pnnl/proven-cluster/releases/tag/v1.3.4

• proven-client - 1.3.4 https://github.com/pnnl/proven-client/releases/tag/v1.3.4

1.5. Release History 9

http://mirror.olnevhost.net/pub/apache/activemq/activemq-cpp/3.9.4/activemq-cpp-library-3.9.4-src.tar.gz
http://mirror.olnevhost.net/pub/apache/activemq/activemq-cpp/3.9.4/activemq-cpp-library-3.9.4-src.tar.gz
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0
https://github.com/GRIDAPPSD/proven-docker
https://github.com/pnnl/proven-cluster/tree/v1.3.3
https://github.com/pnnl/proven-message/tree/v1.3.1
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.01.0
https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.02.0
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.02.0
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.02.0
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.02.0
https://github.com/pnnl/proven-cluster/releases/tag/v1.3.4
https://github.com/pnnl/proven-client/releases/tag/v1.3.4

GridAPPS-D Documentation, Release 1.0

• proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.1

• proven-docker - https://github.com/GRIDAPPSD/proven-docker

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.02.0

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

• sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.02.0

4. Docker Container:

GridAPPS-D creates and starts following docker containers:

• gridappsd/gridappsd:2019.01.0 - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.01.0

– proven-client - https://github.com/pnnl/proven-client

– cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

– gridappsd/gridappsd-base:master - https://github.com/GRIDAPPSD/gridappsd-docker-
build/tree/releases/2019.01.0

– zeromq - http://download.zeromq.org/zeromq-4.0.2.tar.gz

– zeromq_czmq - https://archive.org/download/zeromq_czmq_3.0.2/czmq-3.0.2.tar.gz

– activemq - http://mirror.olnevhost.net/pub/apache/activemq/activemq-cpp/3.9.4/
activemq-cpp-library-3.9.4-src.tar.gz

– fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

– gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

• gridappsd/influxdb:2019.01.0 - https://github.com/GRIDAPPSD/gridappsd-data/tree/releases/2019.01.0

– influxdb:latest - https://hub.docker.com/_/influxdb

• gridappsd/blazegraph - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0

– lyrasis/lbazegraph:2.1.4 - https://hub.docker.com/r/lyrasis/blazegraph

• gridappsd/proven - https://github.com/GRIDAPPSD/proven-docker

– proven-cluster - https://github.com/pnnl/proven-cluster/tree/v1.3.3

– proven-message - https://github.com/pnnl/proven-message/tree/v1.3.1

• gridappsd/sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.01.0

– gridappsd/app-container-base - (TODO: @Craig can you provide the repository?)

• gridappsd/viz:2019.01.0 - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.01.0

• redis:3.2.11-alpine - https://hub.docker.com/_/redis

• mysql/mysql-server:5.7 - https://hub.docker.com/_/mysql

1.5.4 Version 2019.03.0

1. Bugs Fixed

• Sending a command to change set point to the PV inverter has no effect.

10 Chapter 1. Overview

https://github.com/pnnl/proven-message/releases/tag/v1.3.1
https://github.com/GRIDAPPSD/proven-docker
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.02.0
https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.02.0
https://github.com/pnnl/proven-client
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0
http://download.zeromq.org/zeromq-4.0.2.tar.gz
https://archive.org/download/zeromq_czmq_3.0.2/czmq-3.0.2.tar.gz
http://mirror.olnevhost.net/pub/apache/activemq/activemq-cpp/3.9.4/activemq-cpp-library-3.9.4-src.tar.gz
http://mirror.olnevhost.net/pub/apache/activemq/activemq-cpp/3.9.4/activemq-cpp-library-3.9.4-src.tar.gz
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.01.0
https://github.com/GRIDAPPSD/proven-docker
https://github.com/pnnl/proven-cluster/tree/v1.3.3
https://github.com/pnnl/proven-message/tree/v1.3.1
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.01.0

GridAPPS-D Documentation, Release 1.0

• Time series query return no data after simulation run.

• Viz: Switch operations not working on Firefox browser. Time on x-axis on plots is not displayed correctly.

2. New Features

• GridAPPS-D – VOLTTRON initial interface created. https://github.com/VOLTTRON/volttron/tree/
rabbitmq-volttron/examples/GridAPPS-DAgent

• Fault injection: Simulator can receive faults. Fault schema created in Test Manager. Workflow for fault
processing documented on readthedocs.

• Viz: Created menu for capacitors, regulators.

• Proven: Facilitates direct disclosure of JSON messages to Proven via Hazelcast or REST; eliminating need
for the proven-message library. Improved throughput and scalability for Proven’s data disclosure compo-
nent. Disclosed data is now distributed or staged across the cluster to be used by future JET processing
pipelines.

3. Documentation

• CIM100 documented

• Steps added for creating and testing an application

• Updated documentation on Simulation API

4. Source Code

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.03.0

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.03.0

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.03.0

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.03.0

• proven-cluster - 1.3.4 https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.3

• proven-client - 1.3.4 https://github.com/pnnl/proven-client/releases/tag/v1.3.4

• proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.3

• proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.03.0

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.03.
0

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

• sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.03.0

1.5.5 Version 2019.06.0

1. Bugs Fixed

• Updated configuration, power grid model and simulation API for CIM100 and app evaluation features
addition.

• All logs are being published to topic instead of queue.

• Fixed TypError bug in gridappsd-sensor-service.

2. New Features

1.5. Release History 11

https://github.com/VOLTTRON/volttron/tree/rabbitmq-volttron/examples/GridAPPS-DAgent
https://github.com/VOLTTRON/volttron/tree/rabbitmq-volttron/examples/GridAPPS-DAgent
https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.03.0
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.03.0
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.03.0
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.03.0
https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.3
https://github.com/pnnl/proven-client/releases/tag/v1.3.4
https://github.com/pnnl/proven-message/releases/tag/v1.3.3
https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.03.0
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.03.0
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.03.0
https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.03.0

GridAPPS-D Documentation, Release 1.0

• Communication outages: Platform supports input and/or output outage request with simulation for all or
some selected power grid components. Outages are initiated and removed at the requested start and end
time.

• Fault injection: Platform can receive faults with simulation request and forwards them to co-simulator.

• Viz UI updated: Input form added for communication outage and fault parameter selection. Input form
moved from single page to separate tabs.

• CIM version update: Updated CIM version to CIM100. Added support for Recloser and Breaker in model
parsing.

• New methods in Python wrapper: Capability added in gridappsd-python to start, stop and run a simulation
directly from python using yaml or json.

• Sample app container move to Python 3.6 as default. Updated gridappsd-sample-app to use updated con-
tainer.

• Debug scripts added: Added scripts in gridappsd-docker to run platform, co-simulator and simulator in
separate terminals for debugging purposes.

• Sensor service in available in gridappsd container by default. Sensor service is no longer required to be
added in gridappsd container via docker-compose file.

• Default log level is changed from DEBUG to ERROR for limiting the amount of log messages on terminal.

• Breaking API change - Simulation input and output topics changed in gridappsd-python from
FNCS_INPUT_TOPIC to SIMULATION_INPUT_TOPIC and FNCS_OUTPUT_TOPIC to SIMULA-
TION_OUTPUT_TOPIC.

• Breaking API change - Simulation request return a json with simulation id and list of events with their
uuids instead of just simulation id.

3. Documentation

• Using GridAPPS-D documentation section updated for new UI input form with communication outages
and faults selection.

4. Source Code

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.06.0

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.06.0

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.06.0

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.06.0

• proven-cluster - 1.3.4 https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.3

• proven-client - 1.3.4 https://github.com/pnnl/proven-client/releases/tag/v1.3.4

• proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.3

• proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.06.0

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.06.
0

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146

• sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.06.0

12 Chapter 1. Overview

https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.06.0
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.06.0
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.06.0
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.06.0
https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.3
https://github.com/pnnl/proven-client/releases/tag/v1.3.4
https://github.com/pnnl/proven-message/releases/tag/v1.3.3
https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.06.0
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.06.0
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.06.0
https://github.com/GRIDAPPSD/gridlab-d/tree/feature/1146
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.06.0

GridAPPS-D Documentation, Release 1.0

1.5.6 Version 2019.07.0

1. Bugs Fixed

• Time series query filter are updated in the API as well documentation.

• Selecting houses is now working with the simulation.

• Following bugs resolved for Viz

– Line name is not based on previously selected values.

– Removing a selected app-name closes input form

– Change Event Id to Event tag

– Change attribute to a multi-value select box

– Help-text ‘Add input item’ does not go away on CommOutage tab

– Object mrid is not correct for multiple phases selection.

• Pos added for load break switches

2. New Features

• Platform now stores input and output from services and applications output/input in time series data store.

• Simulation can run with new 9500 node model

• Support for synchronous machines added in CIM model in blazegraph.

• End-to-end fault injecting and processing pipeline is now working.

• Powergrid api added to query object id, object dictionary and object measurements.

• New keys added in glm file to support faults.

• Viz can display plot for new 9500 model.

• Added log api in gridappsd-python

• Measurement for switch positions for all models

• Explicit setting for manual mode in reg and capacitora in the RegulatingControl.mode attribute.

• GridAPPS base constainer has folowwing changes

– Switch to openjdk

– New version of fncs

– CZMQ_VERSION changeed to 4.2.0

– ZMQ_VERSION changes to 4.3.1

– GridLAB-D switched from feature/1146 to develop

3. Source Code

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.07.0

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.07.0

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.07.0

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.07.0

• proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.4

• proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.5

1.5. Release History 13

https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.07.0
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.07.0
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.07.0
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.07.0
https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.4
https://github.com/pnnl/proven-client/releases/tag/v1.3.5

GridAPPS-D Documentation, Release 1.0

• proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

• proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.06.0

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.07.
0

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

• sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.07.0

1.5.7 Version 2019.08.0

1. New Features

• Viz added capability to select power/voltage/tap measurments for custom plotting

• Control attributes are back for Capacitors

• Added Voltage Violation service that publishes list of measurement ids with per unit voltages that are out
of range every 15 minutes

• Viz added display for Voltage Violation service output

• Viz can display Lot/Long coordinated for 9500 node model.

• Breaking Change: JSON format for timeseries query response is flattend out

• Resolved 500 Internal server error for storing simulation input.

• Houses are created and uploaded to Blazegraph for 123 node model

• Additonal column process_type added for logs to distinguish process id for simulation

2. Source Code

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.08.0

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.08.0

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.08.0

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.08.0

• proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.5

• proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.5

• proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

• proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.08.0

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.08.
0

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

• sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.08.0

14 Chapter 1. Overview

https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4
https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.06.0
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.07.0
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.07.0
https://github.com/GRIDAPPSD/gridlab-d/tree/develop
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.07.0
https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.08.0
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.08.0
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.08.0
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.08.0
https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.5
https://github.com/pnnl/proven-client/releases/tag/v1.3.5
https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4
https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.08.0
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.08.0
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.08.0
https://github.com/GRIDAPPSD/gridlab-d/tree/develop
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.08.0

GridAPPS-D Documentation, Release 1.0

1.5.8 Version 2019.08.1

1. New Features

• Viz: Change simulation pause button to start button when simulation completes.

• Bug fix: Simulation id dropdown is not showing selected id in Browse-data-logs.

• Bug fix: Timeseries queries returning same object multiple times.

• Bug fix: Weather file containes only 10 minute data even if simulation duration is longer.

2. Source Code

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.08.1

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.08.1

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.08.1

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.08.0

• proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.5

• proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.5

• proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

• proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.08.0

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.08.
1

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

• sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.08.1

1.5.9 Version 2019.09.0

1. New Features

• Fault Processing: Faults are working on radial feeders.

• Note: Faults are not working on meshed systems. If you have a meshed system then send switch open
message to simulate the fault.

2. Source Code

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.09.0

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.09.0

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.09.0

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.09.0

• proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.5

• proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.5

• proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

• proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.09.0

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

1.5. Release History 15

https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.08.1
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.08.1
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.08.1
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.08.0
https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.5
https://github.com/pnnl/proven-client/releases/tag/v1.3.5
https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4
https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.08.0
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.08.1
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.08.1
https://github.com/GRIDAPPSD/gridlab-d/tree/develop
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.08.1
https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.09.0
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.09.0
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.09.0
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.09.0
https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.5
https://github.com/pnnl/proven-client/releases/tag/v1.3.5
https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4
https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.09.0
https://github.com/GRIDAPPSD/fncs/tree/develop

GridAPPS-D Documentation, Release 1.0

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.09.
0

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

• sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.09.0

1.5.10 Version 2019.09.1

1. New Features

• BREAKING CHANGE: Measurements in simulation output message changed from array to dictionary.

• Simulation are now working for 9500 model with houses.

• Added missing measurement in blazegraph for houses.

• Voltage violation service and Viz app updated to work with new simulation output format.

• Faults are working with 9500 model.

• Viz app: User can select services and their input parameters in simulation request form.

• Viz app: Y-axis label corrected if plot value is same during the simulation run.

• Simulation request API updated to take user input parameters for services.

• Timezone corrected for pre-loaded weather data.

• Operational limit set on the power grid models in blazegraph.

2. Source Code

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.09.1

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.09.1

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.09.1

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.09.1

• proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

• proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

• proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

• proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.09.1

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.09.
1

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

• sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.09.1

1.5.11 Version 2019.10.0

1. New Features

• Alarms service created. It publishes alarm whenver a switch or capacitor is opened or closed. It is added
as a pre-requisite for sample app.

• Load profile data pre-loaded in timeseries data store InfluxDB.

16 Chapter 1. Overview

https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.09.0
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.09.0
https://github.com/GRIDAPPSD/gridlab-d/tree/develop
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.09.0
https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.09.1
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.09.1
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.09.1
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.09.1
https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7
https://github.com/pnnl/proven-client/releases/tag/v1.3.6
https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4
https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.09.1
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.09.1
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.09.1
https://github.com/GRIDAPPSD/gridlab-d/tree/develop
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.09.1

GridAPPS-D Documentation, Release 1.0

• Load profile file ieeezipload.player is created dynamically based on simulation start time and duration.

• API updated in platform and Proven to query load profile data.

• Timeseries API updated to accept timestamps in seconds instead of micro or nanosecond.

• Timeseries API updated to accept query filters in an array instead of single value.

• Viz app: User can search and highlight objects on network by name and mrid.

• Viz app: User can re-center network graph.

• Viz app: Displays alarms in a saperate tab when simulation is running. Notifies when a new alarm is
received in alarm tab.

• Viz app: User can upload scheduled commands json file with communication outage and faults.

• Viz app: Switches are displayed as closed/opened based on simulation output value.

• Viz app: Display image for switches are changes to green/red squares and moved between nodes.

• Bug fixes in DSS configuration.

• GridLAB-D updated to latest develop version.

• OpenDSSCmd updated to 1.2.3.

• Powergrid models - Updated Generator.dss to include kVA for generators.

• Added kva base to glm file, so setting kw=0 does not make the kva base also 0.

• Internal house loads added. Schedule file is created for simulation when useHouses=true.

• Sensor service bugs fixed.

• API added to export Vnom opendss file.

2. Source Code

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.10.0

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.10.0

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.10.0

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.10.0

• proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

• proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

• proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

• proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.10.0

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.10.
0

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

• sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.10.0

1.5. Release History 17

https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.10.0
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.10.0
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.10.0
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.10.0
https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7
https://github.com/pnnl/proven-client/releases/tag/v1.3.6
https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4
https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.10.0
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.10.0
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.10.0
https://github.com/GRIDAPPSD/gridlab-d/tree/develop
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.10.0

GridAPPS-D Documentation, Release 1.0

1.5.12 Version 2019.12.0

1. New Features

• Updated and documented MRID UUID generator to ensure compliance with UUID 4

• Integrate DNP3 service with GridAPPS-D container

• Created API to get user role based on login

• Added a user for testmanager to distinguish between simulation commands and alarms

• Removed hardcoded corrdinate identifcation from Viz

• Added capability to change model state before starting a simulation.

• Added feature on UI to upload a file with faults and comunication output

• Created user login page on UI

• Added light/dark toggle themeon UI

• Wrote a SWING_PQ node for each potential island in power grid model.

• Fixed issues for app eveluations as reported by app developers or evluation team

• Updated ci/cd scripts for repositories to support travis.ci updates

2. Source Code

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.12.0

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.12.0

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.12.0

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.12.0

• proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

• proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

• proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

• proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.12.0

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.12.
0

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

• sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.12.0

1.5.13 Version 2020.01.0

1. New Features

• Alarms are varified before publishing.

• Fixed floating switches issue on Viz app.

• Release process documeted at gridappsd-docker-build repository readme

• Created an automated, repeatable way to upload data in blazegraph

• Documented model state update for starting a simulation

18 Chapter 1. Overview

https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2019.12.0
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2019.12.0
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2019.12.0
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2019.12.0
https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7
https://github.com/pnnl/proven-client/releases/tag/v1.3.6
https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4
https://github.com/GRIDAPPSD/proven-docker/tree/releases/2019.12.0
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.12.0
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2019.12.0
https://github.com/GRIDAPPSD/gridlab-d/tree/develop
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2019.12.0

GridAPPS-D Documentation, Release 1.0

2. Source Code

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.01.0

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.01.0

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.01.0

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.01.0

• proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

• proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

• proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

• proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.01.0

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.01.
0

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

• sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.01.0

1.5.14 Version 2020.02.0

1. New Features

• Alarms status is published as Open/Close instead of 0/1.

• Added resume/pause-at API for simulation.

• Added the EnergyConsumer.p attribute as a writable property in the FNCS GOSS Bridge

• Fixed floating switches issue on Viz app.

• Added units on the plots.

• Viz allow user to go to nodes by clicking on plots.

• Labels added for overlapping line on Viz plots.

• Operator login issue resolved.

• First integration test added in gridappsd-testing repo.

2. Source Code

• goss-gridapps-d - https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.02.0

• gridappsd-viz - https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.02.0

• gridappsd-python - https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.02.0

• cim2glm - https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.02.0

• proven-cluster - https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7

• proven-client - https://github.com/pnnl/proven-client/releases/tag/v1.3.6

• proven-message - https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4

• proven-docker - https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.02.0

• fncs - https://github.com/GRIDAPPSD/fncs/tree/develop

1.5. Release History 19

https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.01.0
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.01.0
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.01.0
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.01.0
https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7
https://github.com/pnnl/proven-client/releases/tag/v1.3.6
https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4
https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.01.0
https://github.com/GRIDAPPSD/fncs/tree/develop
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.01.0
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.01.0
https://github.com/GRIDAPPSD/gridlab-d/tree/develop
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.01.0
https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/tree/releases/2020.02.0
https://github.com/GRIDAPPSD/gridappsd-viz/tree/releases/2020.02.0
https://github.com/GRIDAPPSD/gridappsd-python/tree/releases/2020.02.0
https://github.com/GRIDAPPSD/Powergrid-Models/tree/releases/2020.02.0
https://github.com/pnnl/proven-cluster/releases/tag/v1.3.5.7
https://github.com/pnnl/proven-client/releases/tag/v1.3.6
https://github.com/pnnl/proven-message/releases/tag/v1.3.5.4
https://github.com/GRIDAPPSD/proven-docker/tree/releases/2020.02.0
https://github.com/GRIDAPPSD/fncs/tree/develop

GridAPPS-D Documentation, Release 1.0

• gridappsd-docker-build - https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.02.
0

• gridlab-d - https://github.com/GRIDAPPSD/gridlab-d/tree/develop

• sample-app - https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.02.0

1.6 Contact Us

GridAPPS-D team can be reached at gridappsd@pnnl.gov

20 Chapter 1. Overview

https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.02.0
https://github.com/GRIDAPPSD/gridappsd-docker-build/tree/releases/2020.02.0
https://github.com/GRIDAPPSD/gridlab-d/tree/develop
https://github.com/GRIDAPPSD/gridappsd-sample-app/tree/releases/2020.02.0
mailto:gridappsd@pnnl.gov

CHAPTER 2

Installing GridAPPS-D

GridAPPS-D is available using docker containers

2.1 Requirements

• git

• docker version 17.12 or higher

• docker-compose version 1.16.1 or higher

2.2 Docker and prerequisite install on OS X

• git

– OS X requires xcode

xcode-select --install

2.3 Clone or download the repository

git clone https://github.com/GRIDAPPSD/gridappsd-docker
cd gridappsd-docker

2.4 Install Docker on Ubuntu

• run the docker-ce installation script

21

GridAPPS-D Documentation, Release 1.0

./docker_install_ubuntu.sh

• log out of your Ubuntu session and log back in to make the docker groups change active

2.5 Start the docker container services

./run.sh

The run.sh does the following

• download the mysql dump file

• download the blazegraph data

• start the docker containers

• ingest the blazegraph data

• connect to the gridappsd container

2.6 Start gridappsd

Now we are inside the executing container

root@737c30c82df7:/gridappsd# ./run-docker.sh

Open your browser to http://localhost:8080/

2.7 Exiting the container and stopping the containers

Use Ctrl+C to stop gridappsd from running
exit
./stop.sh

2.8 Restarting the containers

./run.sh

Reconnecting to the running gridappsd container

user@foo>docker exec -it gridappsddocker_gridappsd_1 bash

22 Chapter 2. Installing GridAPPS-D

http://localhost:8080/

CHAPTER 3

Using GridAPPS-D

3.1 Start GridAPPS-D platform

Connect to the running GridAPPS-D container

user@foo>docker exec -it gridappsddocker_gridappsd_1 bash

Now we are inside the executing container. Start the platform.

root@737c30c82df7:/gridappsd# ./run-docker.sh

Open your browser to http://localhost:8080/ and click the menu button.

3.2 Start
a
Sim-
u-
la-
tion

Choose
Sim-
u-
la-
tions
from
the
menu.

23

http://localhost:8080/

GridAPPS-D Documentation, Release 1.0

To
run
a
demo
sim-
u-
la-
tion

keep the selected and entered values as it is. Otherwise select/enter Powergrid, Simulation and Application configura-
tion values. Click the submit button to save the configuration.

Click
the
tri-
an-
gle

24 Chapter 3. Using GridAPPS-D

GridAPPS-D Documentation, Release 1.0

to
start
the
sim-
u-
la-
tion.

The
demo
sim-
u-
la-
tion
runs
2

minutes of load variations with the sample-app controlling capacitor banks on the IEEE 8500-node test system [CIT2].
Most of Figure 1 is devoted to a map layout view of the test circuit, with updated labels for capacitor banks and
voltage regulators. On the right-hand side, strip chart plots of the phase ABC voltages at capacitors and regulators,
phase ABC substation power levels, and phase ABC regulator taps are continually updated. Capacitor bank labels
on the circuit map view change between OPEN and CLOSED to show the bank status as load varies and the VVO
application issues control commands. While GridAPPS-D runs the demo, GridLAB-D [CIT8] simulates power
system operation and exchanges information with the sample-app using GOSS [CIT6] and FNCS [CIT7].

Following image shows the demo simulation output of the sample-app running on the IEEE 8500-node test system.
Simulation Status at the bottom of the screen will display the simulation log messages. The simulation can be
paused or stopped using the play and stop button.

3.3 Stop GridAPPS-D platform

For an orderly shutdown of the platform:

3.3. Stop GridAPPS-D platform 25

GridAPPS-D Documentation, Release 1.0

Use Ctrl+C to stop gridappsd from running

3.4 Adding Events

Communication outage and fault events can be added using the Test Configuration page

Select the CommOutage radio button for adding Communication Outage Events

Select
the
Fault
ra-
dio
but-
ton
for
adding
Fault
Events

Added
events
can
be
viewed
in
a
tab-

ular format on the right side of the page

The
added
events
for
a
sim-
u-
la-
tion
can
be
seen
in
the
events
view

26 Chapter 3. Using GridAPPS-D

GridAPPS-D Documentation, Release 1.0

3.5 Uploading
Model
into
Blaze-

graph

With the platform running, use curl to load the file into Blazegraph.

curl -s -D- -H 'Content-Type: application/
→˓xml' --upload-file 'model.xml' -X POST 'http://localhost:8889/bigdata/sparql'

Once the model is uploaded to Blazegraph, the new model will be shown in the Simulation Configuration Form
in the visualization under the line name dropdown. If the Viz app was already open, you will need to restart the

browser to see the new model(This is due to caching).

3.6 Inserting Measurements into Blazegraph

Clone the Powergrid-Models repository

git clone https://github.com/GRIDAPPSD/Powergrid-Models.git

Install the required python module

3.5. Uploading Model into Blazegraph 27

GridAPPS-D Documentation, Release 1.0

pip install SPARQLWrapper

Modify the Powergrid-Models/Meas/constants.py file. Change the blazegraph_url to “http://localhost:8889/bigdata/
sparql”.

Create a temporary directory for the measurements files

mkdir tmp
cd tmp

List the feeder and feeder id

python3 ../Powergrid-Models/Meas/ListFeeders.py

Generate the measurements file using the feeder and feeder id from the previous step

python3 ../Powergrid-Models/Meas/ListMeasureables.py ieee123pv _E407CBB6-8C8D-9BC9-
→˓589C-AB83FBF0826D

Load the measurements into Blazegraph

for f in `ls -1 *txt`; do
python3 ../Powergrid-Models/Meas/InsertMeasurements.py $f

done

3.7 Using Platform API

Applications and services can use either publish/subscribe mechanism or Python API to interact with GridAPPS-D
platform.

Publish/Subscribe mechanism can be implemented using any of the language bindings for ActiveMQ messaging
framework.

Python API wraps the publish/subscribe messaging and makes the interaction easier for Python apps/services. For
more information on Python API and how to use it, look at https://github.com/GRIDAPPSD/gridappsd-python and
https://github.com/GRIDAPPSD/gridappsd-sample-app.

Following sections describe the messaging APIs and the corresponding Python API function to interact with platform.
Where no Python API function is mentioned, following generic functions can be used.

send(self, topic, message)
get_response(self, topic, message, timeout=5)
subscribe(self, topic, callback, id=None)

3.8 Powergrid Model API

The Powergrid Model Data Manager API allows you to query the powergrid model data store.

3.8.1 Query Request Queue

Query request should be sent on following queue: goss.gridappsd.process.request.data.powergridmodel

28 Chapter 3. Using GridAPPS-D

http://localhost:8889/bigdata/sparql
http://localhost:8889/bigdata/sparql
https://github.com/GRIDAPPSD/gridappsd-python
https://github.com/GRIDAPPSD/gridappsd-sample-app

GridAPPS-D Documentation, Release 1.0

3.8.2 Query Model Info

Returns list of names/ids for models, substations, subregions, and regions for all available feeders.

Allowed parameter is:

• Result Format – XML/JSON/CSV, Will return results as a list in the format selected.

Example Request:

{
"requestType": "QUERY_MODEL_INFO",
"resultFormat": "JSON"

}

Example Response for result format JSON:

{
"models": [{

"modelName": "ieee123",
"modelId": "_C1C3E687-6FFD-C753-582B-632A27E28507",
"stationName": "ieee123_Substation",
"stationId": "_FE44B314-385E-C2BF-3983-3A10C6060022",
"subRegionName": "large",
"subRegionId": "_1CD7D2EE-3C91-3248-5662-A43EFEFAC224",
"regionName": "ieee",
"regionId": "_24809814-4EC6-29D2-B509-7F8BFB646437"

},

3.8.3 Query Model Names

Returns list of names for all available models.

Allowed parameter is:

• Result Format – XML/JSON/CSV, Will return results as a list in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
"requestType": "QUERY_MODEL_NAMES",
"resultFormat": "JSON"

}

Example Response for result format JSON:

{
"modelNames": ["_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62",
"_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
"_5B816B93-7A5F-B64C-8460-47C17D6E4B0F",
"_67AB291F-DCCD-31B7-B499-338206B9828F",
"_9CE150A8-8CC5-A0F9-B67E-BBD8C79D3095",
"_C1C3E687-6FFD-C753-582B-632A27E28507"]

}

Python API function:

query_model_names(self, model_id=None)

3.8. Powergrid Model API 29

GridAPPS-D Documentation, Release 1.0

3.8.4 Query

Returns results from a generic SPARQL query against one or all models.

Allowed parameters are:

• modelId (optional) - when specified it searches against that model, if empty it will search against all models

• queryString - SPARQL query, for more information see https://www.w3.org/TR/rdf-sparql-query/ See below
for example.

• resultFormat – XML/JSON , The format you wish the result to be returned in. Can be either JSON or XML.
Will return result bindings based on the select part of the query string. See below for example.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
"requestType": "QUERY",
"resultFormat": "JSON",
"queryString": "select ?feeder_name ?subregion_name ?region_name WHERE {?line

→˓r:type c:Feeder.?line c:IdentifiedObject.name ?feeder_name.?line c:Feeder.
→˓NormalEnergizingSubstation ?substation.?substation r:type c:Substation.?substation
→˓c:Substation.Region ?subregion.?subregion c:IdentifiedObject.name ?subregion_name
→˓.?subregion c:SubGeographicalRegion.Region ?region . ?region c:IdentifiedObject.
→˓name ?region_name}"
}

Example Response:

{
"head": {

"vars": ["line_name" , "subregion_name" , "region_name"]
} ,

"results": {
"bindings": [
{

"line_name": { "type": "literal" , "value": "ieee8500" } ,
"subregion_name": { "type": "literal" , "value": "ieee8500_SubRegion"

→˓},
"region_name": { "type": "literal" , "value": "ieee8500_Region" }

}
]

}
}

Python API function:

query_data(self, query, database_type=POWERGRID_MODEL, timeout=30)

3.8.5 Query Object

Returns details for a particular object based on the object Id.

Allowed parameters are:

• modelId (optional) - when specified it searches against that model, if empty it will search against all models

• objectID – mrid of the object you wish to return details for.

• resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

30 Chapter 3. Using GridAPPS-D

https://www.w3.org/TR/rdf-sparql-query/

GridAPPS-D Documentation, Release 1.0

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
"requestType": "QUERY_OBJECT",
"resultFormat": "JSON",
"objectId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3"

}

Example Response:

{
"head": {
"vars": ["property" , "value"]

} ,
"results": {
"bindings": [

{
"property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-

→˓cim17#Feeder.NormalEnergizingSubstation" } ,
"value": { "type": "uri" , "value": "http://localhost:9999/blazegraph/

→˓namespace/kb/sparql#_F1E8E479-5FA0-4BFF-8173-B375D25B0AA2" }
} ,
{

"property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-
→˓cim17#IdentifiedObject.mRID" } ,

"value": { "type": "literal" , "value": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3
→˓" }

} ,
{

"property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-
→˓cim17#IdentifiedObject.name" } ,

"value": { "type": "literal" , "value": "ieee8500" }
} ,
{

"property": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-
→˓cim17#PowerSystemResource.Location" } ,

"value": { "type": "uri" , "value": "http://localhost:9999/blazegraph/
→˓namespace/kb/sparql#_AD650B25-8A04-EA09-95D4-4F78DD0A05E7" }

} ,
{

"property": { "type": "uri" , "value": "http://www.w3.org/1999/02/22-rdf-
→˓syntax-ns#type" } ,

"value": { "type": "uri" , "value": "http://iec.ch/TC57/2012/CIM-schema-cim17
→˓#Feeder" }

}
]

}
}

Python API function:

query_object(self, object_id, model_id=None):

3.8.6 Query Object Types

Returns the available object types in the model

Allowed parameters are:

3.8. Powergrid Model API 31

GridAPPS-D Documentation, Release 1.0

• modelId (optional) - when specified it searches against that model, if empty it will search against all models

• resultFormat – XML/JSON /CSV, Will return results as a list in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
"requestType": "QUERY_OBJECT_TYPES",
"modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
"resultFormat": "JSON"

}

Example Response:

{
"objectTypes": ["http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode",
"http://iec.ch/TC57/2012/CIM-schema-cim17#TransformerTank",
"http://iec.ch/TC57/2012/CIM-schema-cim17#PowerTransformer",
"http://iec.ch/TC57/2012/CIM-schema-cim17#LinearShuntCompensator",
"http://iec.ch/TC57/2012/CIM-schema-cim17#EnergySource",
"http://iec.ch/TC57/2012/CIM-schema-cim17#ACLineSegment",
"http://iec.ch/TC57/2012/CIM-schema-cim17#LoadBreakSwitch",
"http://iec.ch/TC57/2012/CIM-schema-cim17#EnergyConsumer"]

}

Python API function:

query_object_types(self, model_id=None)

3.8.7 Query Model

Returns all or part of the specified model. Can be filtered by object type

Allowed parameters are:

• modelId - when specified it searches against that model, if empty it will search against all models

• objectType (optional) – type of objects you wish to return details for.

• filter – SPARQL formatted filter string

• resultFormat – XML/JSON, Will return result in the format selected.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
"requestType": "QUERY_MODEL",
"modelId": "_49AD8E07-3BF9-A4E2-CB8F-C3722F837B62",
"resultFormat": "JSON",
"filter": "?s cim:IdentifiedObject.name '650z'",
"objectType": "http://iec.ch/TC57/CIM100#ConnectivityNode"

}

Example Response:

[{
"id": "_0F9BF9EE-B900-71C2-B892-0287A875A158",
"http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode.

→˓ConnectivityNodeContainer": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",

(continues on next page)

32 Chapter 3. Using GridAPPS-D

GridAPPS-D Documentation, Release 1.0

(continued from previous page)

"http://iec.ch/TC57/2012/CIM-schema-cim17#ConnectivityNode.TopologicalNode":
→˓"_AE5EDB3A-9177-AEA6-78EF-3DDBA4557D94",

"http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.mRID": "_0F9BF9EE-
→˓B900-71C2-B892-0287A875A158",

"http://iec.ch/TC57/2012/CIM-schema-cim17#IdentifiedObject.name": "q14733",
"http://www.w3.org/1999/02/22-rdf-syntax-ns#type": "http://iec.ch/TC57/2012/

→˓CIM-schema-cim17#ConnectivityNode"
}]

3.8.8 Query Object Ids

Returns details for a particular object based on the object Id.

Allowed parameters are:

• modelId - when specified it searches against that model, if empty it will search against all models

• objectType (optional) – type of objects you wish to return details for.

• resultFormat – XML/JSON/CSV , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
"modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
"requestType": "QUERY_OBJECT_IDS",
"resultFormat": "JSON",
"objectType": "LoadBreakSwitch"

}

Example Response:

{
"objectIds": [

"_0D2157F2-CD4D-9F68-9212-F663C472AF1C",
"_18D43D9E-36D1-3A2C-AC8F-439232FC1EE2",
"_323C2BDB-69AA-A10C-CEC5-628C77B83268",
"_D7AA7B55-E700-F1E8-B3EB-CB2FB07F8A37",
.......

]
}

3.8.9 Query Object Dictionary

Returns details for either all objects of a particular type or a particular object based on the object Id. Either the object
type or id is required, but not both.

Allowed parameters are:

• modelId - model that you wish to return objects from.

• objectType (not required if objectId is set) – type of object you wish to return details for.

• objectId (not required if objectType is set) - mrid of the object you wish to return details for, if set this will
override objectType.

• resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

3.8. Powergrid Model API 33

GridAPPS-D Documentation, Release 1.0

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
"modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
"requestType": "QUERY_OBJECT_DICT",
"resultFormat": "JSON",
"objectType": "LinearShuntCompensator",
"objectId": "_EF2FF8C1-A6A6-4771-ADDD-A371AD929D5B"

}

Example Response:

{
[
{

"id": "_2199D08B-9352-2085-102F-6B207E0BEBA3",
"ConductingEquipment.BaseVoltage": "_C0A00494-BB68-7476-57E3-9741545AE287",
"Equipment.EquipmentContainer": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
"IdentifiedObject.mRID": "_2199D08B-9352-2085-102F-6B207E0BEBA3",
"IdentifiedObject.name": "capbank0a",
"PowerSystemResource.Location": "_19B9D45D-F556-01D4-8094-3AE64D5E63A0",
"LinearShuntCompensator.b0PerSection": "100",
"LinearShuntCompensator.bPerSection": "0.0077160494",
"LinearShuntCompensator.g0PerSection": "0",
"LinearShuntCompensator.gPerSection": "0",
"ShuntCompensator.aVRDelay": "100",
"ShuntCompensator.grounded": "true",
"ShuntCompensator.maximumSections": "1",
"ShuntCompensator.nomU": "7200",
"ShuntCompensator.normalSections": "1",
"ShuntCompensator.phaseConnection": "PhaseShuntConnectionKind.Y",
"type": "LinearShuntCompensator"

},....
]

}

3.8.10 Query Object Measurements

Returns details for measurements within a model, can be for all objects of a particular type or for those connected to a
particular object based on the objectId. If neither objectType or objectId is provided it will provide all measurements
belonging to the model.

Allowed parameters are:

• modelId - model that you wish to return measurements from.

• objectType (optional) – type of object you wish to return measurements for.

• objectId (optional) - mrid of the object you wish to return measurements for. If set this will override objectType.

• resultFormat – XML/JSON , Will return result bindings based on the select part of the query string.

Example Request: goss.gridappsd.process.request.data.powergridmodel

{
"modelId": "_4F76A5F9-271D-9EB8-5E31-AA362D86F2C3",
"requestType": "QUERY_OBJECT_MEASUREMENTS",
"resultFormat": "JSON",

(continues on next page)

34 Chapter 3. Using GridAPPS-D

GridAPPS-D Documentation, Release 1.0

(continued from previous page)

"objectType": "LinearShuntCompensator",
"objectId": "_2199D08B-9352-2085-102F-6B207E0BEBA3"

}

Example Response:

[
{

"measid": "_59d526ff-32c0-4947-ab58-45f283636786",
"type": "PNV",
"class": "Analog",
"name": "ACLineSegment_ln5532752-2_Voltage",
"bus": "m1047534",
"phases": "A",
"eqtype": "ACLineSegment",
"eqname": "ln5532752-2",
"eqid": "_7A02B3B0-2746-EB24-45A5-C3FBA8ACB88E",
"trmid": "_6B5B889C-E7E1-3444-CC63-7A589AC0DA8F"

},....
]

3.8.11 Put Model

Note: Future Capability. Not yet available.

Inserts a new model into the model repository. This could validate model format during insertion Keep cim/model
version in mind

Allowed parameters are:

• modelId – id to store the new model under, or update existing model

• modelContent – expects either RDF/XML or JSON formatted powergrid model

• inputFormat – XML/JSON

3.9 Configuration File API

3.9.1 Request all GridLAB-D configuration files

Generates all configuration files necessary to run a sumulation using the GridLAB-D simulator. Returns the diretory
where all of the configuration files are stored.

• Required: configurationType, parameters[model_id,directory,simulationname,simulation_start_time,simulation_duration,simulation_id,simulation_broker_host,simulation_broker_port]

• Optional: parameters[i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name,solver_method]

Request: goss.gridappsd.process.request.config

{
"configurationType": "GridLAB-D All",
"parameters": {
"load_scaling_factor": "1.0",

(continues on next page)

3.9. Configuration File API 35

GridAPPS-D Documentation, Release 1.0

(continued from previous page)

"i_fraction": "1.0",
"model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
"p_fraction": "0.0",
"simulation_id": "12345",
"z_fraction": "0.0",
"simulation_broker_host": "localhost",
"simulation_name": "ieee8500",
"simulation_duration": "60",
"simulation_start_time": "1518958800",
"solver_method": "NR",
"schedule_name": "ieeezipload",
"simulation_broker_port": "61616",
"directory": "/tmp/gridlabdsimulation/"

}
}

Response: <directory where files have been stored>

3.9.2 Request GridLAB-D Base File

Generates the main GLM file required by the GridLAB-D simulator

• Required: configurationType, parameters[model_id]

• Optional: parameters[simulation_id, i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name]

Request: goss.gridappsd.process.request.config

{
"configurationType": "GridLAB-D Base GLM",
"parameters": {
"i_fraction": "1.0",
"z_fraction": "0.0",
"model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
"load_scaling_factor": "1.0",
"schedule_name": "ieeezipload",
"p_fraction": "0.0"

}
}

Response:

object regulator_configuration {
name "rcon_reg1a";
connect_type WYE_WYE;

Control MANUAL; // LINE_DROP_COMP;
.......

3.9.3 Request GridLAB-D Symbols File

Generates the symbols file with XY coordinates used by the GridLAB-D simulator

• Required: configurationType, parameters[model_id]

• Optional: parameters[simulation_id]

36 Chapter 3. Using GridAPPS-D

GridAPPS-D Documentation, Release 1.0

Request: goss.gridappsd.process.request.config

{
"configurationType": "GridLAB-D Symbols",
"parameters": {
"model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507"

}
}

Response: :: {“feeders”:[

{“name”:”ieee123”, “mRID”:”_C1C3E687-6FFD-C753-582B-632A27E28507”, “substa-
tion”:”IEEE123”, “substationID”:”_FE44B314-385E-C2BF-3983-3A10C6060022”, “sub-
region”:”Medium”, “subregionID”:”_1CD7D2EE-3C91-3248-5662-A43EFEFAC224”, “re-
gion”:”IEEE”, “regionID”:”_73C512BD-7249-4F50-50DA-D93849B89C43”, “swing_nodes”:[
{“name”:”source”,”bus”:”150”,”phases”:”ABC”,”nominal_voltage”:2401.8,”x1”:100.0,”y1”:1500.0}
], “synchronousmachines”:[], “capacitors”:[

3.9.4 Request CIM Dictionary file

Generates a dictionary file which maps between the mrid identifiers used by the CIM model and the other names of
model objects used by simulators.

• Required: configurationType, parameters[model_id]

• Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
"configurationType":"CIM Dictionary",
"parameters":{"model_id":"_C1C3E687-6FFD-C753-582B-632A27E28507"}

}

Response:

{"feeders":[
{"name":"ieee123",
"mRID":"_C1C3E687-6FFD-C753-582B-632A27E28507",
"substation":"IEEE123",
"substationID":"_FE44B314-385E-C2BF-3983-3A10C6060022",
"subregion":"Medium",
"subregionID":"_1CD7D2EE-3C91-3248-5662-A43EFEFAC224",
"region":"IEEE",
"regionID":"_73C512BD-7249-4F50-50DA-D93849B89C43",
"synchronousmachines":[
],
"capacitors":[
{"name":"c83","mRID":"_232DD3A8-9A3C-4053-B972-8A5EB49FD980","CN1":"83","phases

→˓":"ABC","kvar_A":200.0,"kvar_B":200.0,"kvar_C":200.0,"nominalVoltage":4160.0,"nomU
→˓":4160.0,"phaseConnection":"Y","grounded":true,"enabled":false,"mode":null,
→˓"targetValue":0.0,"targetDeadband":0.0,"aVRDelay":0.0,"monitoredName":null,
→˓"monitoredClass":null,"monitoredBus":null,"monitoredPhase":null},

{"name":"c88a","mRID":"_9A74DCDC-EA5A-476B-9B99-B4FB90DC37E3","CN1":"88","phases
→˓":"A","kvar_A":50.0,"kvar_B":0.0,"kvar_C":0.0,"nominalVoltage":4160.0,"nomU":2402.0,
→˓"phaseConnection":"Y","grounded":true,"enabled":false,"mode":null,"targetValue":0.0,
→˓"targetDeadband":0.0,"aVRDelay":0.0,"monitoredName":null,

(continues on next page)

3.9. Configuration File API 37

GridAPPS-D Documentation, Release 1.0

(continued from previous page)

.......
]
}]}

3.9.5 Request CIM Feeder Index file

Generates a list of the feeders available powergrid model data store

• Required: configurationType, parameters[model_id]

• Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
"configurationType":"CIM Feeder Index",
"parameters":{"model_id":"_C1C3E687-6FFD-C753-582B-632A27E28507"}

}

Response:

{"feeders":[

{“name”:”test9500new”,”mRID”:”_AAE94E4A-2465-6F5E-37B1-3E72183A4E44”,”substationName”:”ThreeSubs”,”substationID”:”_40485321-
9B2C-1B8C-EC33-39D2F7948163”,”subregionName”:”Large”,”subregionID”:”_A1170111-
942A-6ABD-D325-C64886DC4D7D”,”regionName”:”IEEE”,”regionID”:”_73C512BD-7249-
4F50-50DA-D93849B89C43”}, {“name”:”ieee123”,”mRID”:”_C1C3E687-6FFD-C753-582B-
632A27E28507”,”substationName”:”IEEE123”,”substationID”:”_FE44B314-385E-C2BF-3983-
3A10C6060022”,”subregionName”:”Medium”,”subregionID”:”_1CD7D2EE-3C91-3248-5662-
A43EFEFAC224”,”regionName”:”IEEE”,”regionID”:”_73C512BD-7249-4F50-50DA-D93849B89C43”},

]}

3.9.6 Request Simulation Output Configuration file

Generates file containing objects and properties with measurements avilable in the selected model

• Required: configurationType, parameters[model_id]

• Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
"configurationType":"GridLAB-D Simulation Output",
"parameters":{"model_id":"_C1C3E687-6FFD-C753-582B-632A27E28507"}

}

Response:

{
"cap_capbank0a": [
"switchA",
"shunt_A",
"voltage_A"

(continues on next page)

38 Chapter 3. Using GridAPPS-D

GridAPPS-D Documentation, Release 1.0

(continued from previous page)

],

"cap_capbank1b": [
"switchB",
"voltage_B",
"shunt_B"

],
"cap_capbank2c": [
"voltage_C",
"switchC",
"shunt_C"

],
"cap_capbank0b": [
"voltage_B",
"switchB",
"shunt_B"

],.......

3.9.7 Request all OpenDSS configuration files

Generates all configuration files necessary to run a sumulation using the OpenDSS simulator. Returns the diretory
where all of the configuration files are stored.

• Required: configurationType, parameters[model_id,directory,simulationname,simulation_start_time,simulation_duration,simulation_id,simulation_broker_host,simulation_broker_port]

• Optional: parameters[i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name,solver_method]

Request: goss.gridappsd.process.request.config

{
"configurationType": "DSS All",
"parameters": {
"load_scaling_factor": "1.0",
"i_fraction": "1.0",
"model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
"p_fraction": "0.0",
"simulation_id": "12345",
"z_fraction": "0.0",
"simulation_broker_host": "localhost",
"simulation_name": "ieee8500",
"simulation_duration": "60",
"simulation_start_time": "1518958800",
"solver_method": "NR",
"schedule_name": "ieeezipload",
"simulation_broker_port": "61616",
"directory": "/tmp/dsssimulation/"

}
}

Response: <directory where files have been stored>

3.9.8 Request OpenDSS Base File

Generates the main GLM file required by the OpenDSS simulator

• Required: configurationType, parameters[model_id]

3.9. Configuration File API 39

GridAPPS-D Documentation, Release 1.0

• Optional: parameters[simulation_id, i_fraction, p_fraction, z_fraction, load_scaling_factor, schedule_name]

Request: goss.gridappsd.process.request.config

{
"configurationType": "DSS Base",
"parameters": {
"i_fraction": "1.0",
"z_fraction": "0.0",
"model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507",
"load_scaling_factor": "1.0",
"schedule_name": "ieeezipload",
"p_fraction": "0.0"

}
}

Response:

clear
new Circuit.source phases=3 bus1=150 basekv=4.160 pu=1.00000 angle=0.00000 r0=0.00000
→˓x0=0.00010 r1=0.00000 x1=0.00010
new Linecode.11 nphases=1 units=mi rmatrix=[1.32920] xmatrix=[1.34750] cmatrix=[11.
→˓9873]
new Linecode.1 nphases=3 units=mi rmatrix=[0.457600 | 0.156000 0.466600 | 0.153500 0.
→˓158000 0.461500] xmatrix=[1.07800 | 0.501700 1.04820 | 0.384900 0.423600 1.06510]
→˓cmatrix=[15.0567 | -4.85904 15.8641 | -1.85195 -3.08879 14.3156]

.......

3.9.9 Request OpenDSS Coordinates File

Generates the symbols file with XY coordinates used by the OpenDSS simulator

• Required: configurationType, parameters[model_id]

• Optional: parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
"configurationType": "DSS Coordinate",
"parameters": {
"model_id": "_C1C3E687-6FFD-C753-582B-632A27E28507"

}
}

Response:

88,2950.0,1300.0 89,2775.0,1125.0 197,3525.0,2200.0 110,4275.0,3050.0 111,4275.0,3625.0 112,4275.0,2925.0
113,4800.0,2925.0 114,5125.0,2925.0 90,2775.0,900.0 61s,3175.0,1300.0 91,2550.0,1125.0 92,2550.0,825.0
93,2325.0,1125.0 94,2325.0,850.0 95,2025.0,1125.0 96,2025.0,925.0 97,3525.0,2100.0 98,3800.0,2100.0
10,1450.0,2150.0 99,4350.0,2100.0 11,950.0,2150.0

40 Chapter 3. Using GridAPPS-D

GridAPPS-D Documentation, Release 1.0

3.9.10 Request YBus Export Configuration file

Generates file containing ybus configuration for the selected simulation. Simulation must be running.

• Required: configurationType, parameters[simulation_id]

Request: goss.gridappsd.process.request.config

{
"configurationType":"YBus Export",
"parameters":{"simulation_id":"12345"}
}

Response:

{
"yParseFilePath": [

"Row,Col,G,B",
"1,1,517.6253721,-539.2591296",
"2,1,-3.438703156,9.070554234",
"3,1,-5.837170999,11.07061383",
"4,1,-500,500",
"84,1,-9.232329792,20.56428834",
"85,1,1.801223903,-4.751238599",
"86,1,3.057563114,-5.798887966"
..........

3.10 Logging API

All applications and services should publish their log messages using using paltform;s log API.

3.10.1 Publishing Logs:

Log messages should be published on the following topic. Simulation id should be attached to the topic at the end.

goss.gridappsd.simulation.log.[simulation_id]

Message structure for publishing logs :

{
"source": "",
"processId": "",
"timestamp": "long",
"processStatus": "[STARTED|STOPPED|RUNNING|ERROR|PASSED|FAILED]",
"logMessage": "",
"logLevel": "[INFO|DEBUG|ERROR]",
"storeToDb": [true|false]

}

where,

source is the filename publishing log message.

processId is the simulation id.

timestamp is in epoch format.

3.10. Logging API 41

GridAPPS-D Documentation, Release 1.0

storeToDb is true if you want to store this message in log database for later.

3.10.2 Subscribing to Logs:

For the currently running simulation, subcribe to following topic with simulation id appended at the end to receive real
time logs:

goss.gridappsd.simulation.log.[simulation_id]

3.10.3 Querying Logs:

Query request should be sent at following topic:

goss.gridappsd.process.request.data.log

User can query log data by sending either custom SQL query string or using query filters.

1. Custom query string:

Logs are stored in MySQL database in a table named log with following columns: source, processId,timestamp,
processStatus, logMessage, logLevel. User can create custom SQL query string to get log data:

{"query":"select * from log"}

Custom query response:

{ "data": [
{ "process_id": "", "process_status": "RUNNING", "log_level": "INFO", "log_

→˓message": "Starting gov.pnnl.goss.gridappsd.app.AppManagerImpl", "id": "1", "source
→˓": "gov.pnnl.goss.gridappsd.app.AppManagerImpl", "timestamp": "2018-11-14 21:51:11.0
→˓", "username": "system" },

{ "process_id": "", "process_status": "RUNNING", "log_level": "INFO", "log_
→˓message": "Found 0 applications", "id": "2", "source": "gov.pnnl.goss.gridappsd.app.
→˓AppManagerImpl", "timestamp": "2018-11-14 21:51:14.0", "username": "system" },
], "responseComplete": true, "id": "1792453601" }

2. Query filters:

An example for query filters are

{
"source": "ProcessEvent",
"processId": "12345678",
"processStatus": "DEBUG",
"logLevel": "DEBUG"

}

For more details on log message filter look at ‘Publishing Logs’ section.

Custom query response:

{ "data": [
{ "process_id": "414798372", "process_status": "RUNNING", "log_level": "DEBUG

→˓", "log_message": "New rewuest received", "id": "8", "source": "ProcessEvent",
→˓"timestamp": "2018-11-14 21:51:29.0", "username": "system" },

(continues on next page)

42 Chapter 3. Using GridAPPS-D

GridAPPS-D Documentation, Release 1.0

(continued from previous page)

{ "process_id": "", "process_status": "RUNNING", "log_level": "DEBUG", "log_
→˓message": "Running application", "id": "2", "source": "ProcessEvent", "timestamp":
→˓"2018-11-14 21:51:30.0", "username": "system" },
], "responseComplete": true, "id": "1792453601" }

3.11 Simulation API

3.11.1 Start a Simulation

Returns simulation id.

Queue:

goss.gridappsd.process.request.simulation

Example Request:

{

power_system_config: the CIM model to be used in the simulation

"power_system_config": {
"GeographicalRegion_name": "ieee8500nodecktassets_Region",
"SubGeographicalRegion_name": "ieee8500nodecktassets_SubRegion",
"Line_name": "ieee8500"

},

simulation_config: the paramaters used by the simulation

"simulation_config": {
"start_time": "2009-07-21 00:00:00",
"duration": "120",
"simulator": "GridLAB-D",
"timestep_frequency": "1000",
"timestep_increment": "1000",
"simulation_name": "ieee8500",
"power_flow_solver_method": "NR",

simulation_output: the objects and fields to be returned by the simulation

"simulation_output": {
"output_objects": [{

"name": "rcon_FEEDER_REG",
"properties": ["connect_type",
"Control",
"control_level",
"PT_phase",
"band_center",
"band_width",
"dwell_time",
"raise_taps",
"lower_taps",
"regulation"]

},

(continues on next page)

3.11. Simulation API 43

GridAPPS-D Documentation, Release 1.0

(continued from previous page)

.....]
},

model creation config: the paramaters used to generate the input file for the simulation

"model_creation_config": {
"load_scaling_factor": "1",
"schedule_name": "ieeezipload",
"z_fraction": "0",
"i_fraction": "1",
"p_fraction": "0",
"model_state":{

"synchronousmachines":[
{"name":"diesel590","p":100.000,"q":140.000},
{"name":"diesel620","p":150.000,"q":500.000}

],
"switches":[

{"name":"2002200004641085_sw","open":true},
{"name":"2002200004868472_sw","open":true},
{"name":"l9407_48332_sw","open":true},
{"name":"tsw568613_sw","open":false}

]
}

}
},

application config: inputs to any other applications that should run as part of the simluation, in this case the voltvar
application

"application_config": {
"applications": [{

"name": "vvo",
"config_string": "{\"static_inputs\": {\"ieee8500\" : {\"control_

→˓method\": \"ACTIVE\", \"capacitor_delay\": 60, \"regulator_delay\": 60, \"desired_
→˓pf\": 0.99, \"d_max\": 0.9, \"d_min\": 0.1,\"substation_link\": \"xf_hvmv_sub\",\
→˓"regulator_list\": [\"reg_FEEDER_REG\", \"reg_VREG2\", \"reg_VREG3\", \"reg_VREG4\
→˓"],\"regulator_configuration_list\": [\"rcon_FEEDER_REG\", \"rcon_VREG2\", \"rcon_
→˓VREG3\", \"rcon_VREG4\"],\"capacitor_list\": [\"cap_capbank0a\",\"cap_capbank0b\", \
→˓"cap_capbank0c\", \"cap_capbank1a\", \"cap_capbank1b\", \"cap_capbank1c\", \"cap_
→˓capbank2a\", \"cap_capbank2b\", \"cap_capbank2c\", \"cap_capbank3\"], \"voltage_
→˓measurements\": [\"nd_l2955047,1\", \"nd_l3160107,1\", \"nd_l2673313,2\", \"nd_
→˓l2876814,2\", \"nd_m1047574,3\", \"nd_l3254238,4\"], \"maximum_voltages\":
→˓7500, \"minimum_voltages\": 6500,\"max_vdrop\": 5200,\"high_load_deadband\": 100,\
→˓"desired_voltages\": 7000, \"low_load_deadband\": 100,\"pf_phase\": \"ABC\"}}}"

}]
}

3.11.2 Subscribe to Simulation Output

Topic:

/topic/goss.gridappsd.simulation.output.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

44 Chapter 3. Using GridAPPS-D

GridAPPS-D Documentation, Release 1.0

{
"simulation_id" : "12ae2345",

"message" : {
"timestamp" : "1357048800",
"measurements" : {

"123a456b-789c-012d-345e-678f901a234b":{
"measurement_mrid" : "123a456b-789c-012d-345e-

→˓678f901a234b"
"magnitude" : 3410.456,
"angle" : -123.456

}
}

}

3.11.3 Subscribe to Simulation Logs

Topic:

/topic/goss.gridappsd.simulation.log.[simulation_id]

Where simulation_id is response from start simulation API.

Example Message:

{
"source": "",
"processId": "",
"timestamp": "",
"processStatus": "[STARTING|STARTED|STOPPED|RUNNING|ERROR|CLOSED|COMPLETE]",
"logMessage": "",
"logLevel": "[INFO|DEBUG|ERROR]",
"storeToDb": [true|false]

}

3.11.4 Send Input to Simulation

Topic:

/topic/goss.gridappsd.simulation.input.[simulation_id]

Example Message:

{
"command": "update",
"input": {

"simulation_id": "123456",
"message": {

"timestamp": 1357048800,
"difference_mrid": "123a456b-789c-012d-345e-678f901a235c",
"reverse_differences": [{

"object": "61A547FB-9F68-5635-BB4C-F7F537FD824E",
"attribute": "ShuntCompensator.sections",
"value": 1

(continues on next page)

3.11. Simulation API 45

GridAPPS-D Documentation, Release 1.0

(continued from previous page)

},
{

"object": "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
"attribute": "ShuntCompensator.sections",
"value": 0

}
],
"forward_differences": [{

"object": "61A547FB-9F68-5635-BB4C-F7F537FD824E",
"attribute": "ShuntCompensator.sections",
"value": 0

},
{

"object": "E3CA4CD4-B0D4-9A83-3E2F-18AC5F1B55BA",
"attribute": "ShuntCompensator.sections",
"value": 1

}
]
}

}
}

3.12 Timeseries API

The Timeseries Data API allows you to query the timeseries data such as weather, simulation output and input.

3.12.1 Query Request Queue

Query request should be sent on following queue: goss.gridappsd.process.request.data.timeseries

3.12.2 Query Weather data

The weather data is based on exported data collected from the Solar Radiation Research Laboratory
(39.74N,105.18W,1829 meter elevation) January - December 2013. The original dataset was based in Mountain Stan-
dard Time (MST).

The original column names included engineering units, but could not be included on the import. Below is a mapping
between the exported column headers and the fields in the Influx database management system.

Original Exported Data Influx Measurement Field Key Field
→˓Type
------------------------------------ ---------------------------- -------
→˓---
DATE (MM/DD/YYYY) DATE String
MST MST String
Global CM22 (vent/cor) [W/ft^2] GlobalCM22 Float
Direct CH1 [W/ft^2] DirectCH1 Float
Diffuse CM22 (vent/cor) [W/ft^2] Diffuse Float

(continues on next page)

46 Chapter 3. Using GridAPPS-D

GridAPPS-D Documentation, Release 1.0

(continued from previous page)

Tower Dry Bulb Temp [deg F] TowerDryBulbTemp Float
Tower RH [%] TowerRH Float
Avg Wind Speed @ 42ft [MPH] AvgWindSpeed Float
Avg Wind Direction @ 42ft [deg from N] AvgWindDirection Float

Original Exported Data Influx Measurement Tag Type
------------------------------------ ---------------------------- -------
→˓---
n/a lat String
n/a long String
n/a place String

Influx database details:

Database name: “proven”, Measurement name: “weather”

Example Request:

{"queryMeasurement":"weather",
"queryFilter":{"startTime":"1357048800000000",

"endTime":"1357048860000000"},
"responseFormat":"JSON"}

Example Response for result format JSON:

{ "data": [{ "Diffuse": 2.5305959999999996,
"AvgWindSpeed": 0,
"TowerRH": 70.65,
"long": "105.18 W",
"MST": "08:00",
"TowerDryBulbTemp": 16.124,
"DATE": "1/1/2013",
"DirectCH1": 0.08549150370000001,
"GlobalCM22": 2.53962588,
"AvgWindDirection": 0,
"time": 1357048800,
"place": "Solar Radiation Research Laboratory",
"lat": "39.74 N" },

{ "Diffuse": 2.6431350599999996,
"AvgWindSpeed": 0,
"TowerRH": 70.41,
"long": "105.18 W",
"MST": "08:01",
"TowerDryBulbTemp": 15.908,
"DATE": "1/1/2013",
"DirectCH1": 0.045951777299999996,
"GlobalCM22": 2.6501118499999996,
"AvgWindDirection": 0,
"time": 1357048860,
"place": "Solar Radiation Research Laboratory",
"lat": "39.74 N" }],

"responseComplete": true,
"id": "1998314042" }

Allowed values for queryFilter are:

3.12. Timeseries API 47

GridAPPS-D Documentation, Release 1.0

startTime[epoch number]
endTime[epoch number]
AvgWindDirection[number]
AvgWindSpeed[number]
Diffuse[number]
DirectCH1[number]
GlobalCM22[number]
MST[number]
TowerDryBulbTemp[number]
TowerRH[number]
lat[string]
long[string]
place[string]

3.12.3 Query Simulation Data

Returns simulation input or output data based on query filters

Example Request:

{"queryMeasurement": "simulation",
"queryFilter": {"simulation_id": "582881157"},
"responseFormat": "JSON"}

Example Response for result format JSON:

{
"data": { "measurements": [{ "name": "simulation",

"points": [{ "row": { "entry": [
{ "key": "hasMeasurementDifference", "value": "FORWARD" },
{ "key": "hasSimulationMessageType", "value": "INPUT" },
{ "key": "difference_mrid", "value": "c65d4ba9-8689-4838-970c-

→˓2983b54ed2e6" },
{ "key": "simulation_id", "value": "582881157" },
{ "key": "time", "value": "1562614884" },
{ "key": "attribute", "value": "ShuntCompensator.sections" },
{ "key": "value", "value": "0.0" },
{ "key": "object","value": "_5405BE1A-BC86-5452-CBF2-

→˓BD1BA8984093" }]}},
{ "row": { "entry": [

{ "key": "hasMeasurementDifference", "value": "FORWARD" },
{ "key": "hasSimulationMessageType", "value": "INPUT" },
{ "key": "difference_mrid", "value": "c65d4ba9-8689-4838-970c-

→˓2983b54ed2e6" },
{ "key": "simulation_id", "value": "582881157" },
{ "key": "time", "value": "1562614884" },
{ "key": "attribute", "value": "ShuntCompensator.sections" },
{ "key": "value", "value": "0.0" },
{ "key": "object", "value": "_8D0EAC3F-AD56-C5A6-ED03-

→˓863DBB4A8C5F"}]}}
"responseComplete": true,
"id": "1927836780" }

Allowed values for queryFilter are:

48 Chapter 3. Using GridAPPS-D

GridAPPS-D Documentation, Release 1.0

Both input and output message type:
starttime [number]
endtime [number]
measurement_mrid [string] or [array of string values]
simulation_id [string]
hasSimulationMessageType ["OUTPUT" | "INPUT"]

Ouput message type:
angle [number]
magnitude [number]

Input Message type:
hasMeasurementDifference ["FORWARD" | "REVERSE"]
attribute [string]
difference_mrid [string]
object [string]
value [number]

Please find some sample requests with various query filters

{"queryMeasurement": "simulation",
"queryFilter": {"simulation_id": "582881157", "hasSimulationMessageType": "INPUT"},
"responseFormat": "JSON"}

{"queryMeasurement": "simulation",
"queryFilter": {"simulation_id": "582881157", "angle": 23.706919634782313},
"responseFormat": "JSON"}

{"queryMeasurement":"simulation",
"queryFilter":{"simulation_id":"1743450224",
"measurement_mrid":["_01625641-d9ae-4c34-8302-69a9620ec69d","_ffd6abc7-159d-4f6d-868b-
→˓7bf7b087ab85"]},
"responseFormat":"JSON"}

3.12.4 Query Sensor Service Data

Returns output of sensor sensor service.

Example Request:

{"queryMeasurement": "gridappsd-sensor-simulator",
"queryFilter": {"simulation_id": "582881157"},
"responseFormat": "JSON"}

Example Response for result format JSON:

{
"data": {
"measurements": [

{
"name": "gridappsd-sensor-simulator",
"points": [

{
"row": {
"entry": [

{

(continues on next page)

3.12. Timeseries API 49

GridAPPS-D Documentation, Release 1.0

(continued from previous page)

"key": "instance_id",
"value": "gridappsd-sensor-simulator-

→˓1564186315783"
},
{

"key": "hasSimulationMessageType",
"value": "OUTPUT"

},
{

"key": "measurement_mrid",
"value": "_0009caa4-23ef-41b9-9db7-

→˓624f3f47460c"
},
{

"key": "angle",
"value": "-152.44531328865978"

},
{

"key": "magnitude",
"value": "2470.4939175057075"

},
{

"key": "simulation_id",
"value": "1512566584"

},
{

"key": "time",
"value": "1564186297"

}
]
}

},.........]}]
},
"responseComplete": true,
"id": "597021681"

}

Allowed values for queryFilter are:

starttime [number]
endtime [number]
measurement_mrid [string]
simulation_id [string]
instance_id
angle [number]
magnitude [number]
value [number]

3.13 Services

Sensor Simulator Service The GridAPPSD’s Sensor Simulator simulates real devices based upon the magnitude of
“prestine” simulated values. Currently the sensor service supports angle and magnitude measurements.

‘_GridAPPS-D DNP3 Service <https://gridappsd-dnp3.readthedocs.io/en/develop/>’__ The GridAPPS-D DNP3 Ser-
vice integrates GridAPPS-D with DNP3 based commercial tools to enable the CIM and DNP3 data exchange of the

50 Chapter 3. Using GridAPPS-D

https://gridappsd-sensor-simulator.readthedocs.io
https://gridappsd-dnp3.readthedocs.io/en/develop/

GridAPPS-D Documentation, Release 1.0

devices.

3.14 Hosting Application

3.14.1 Supported Application or Service Types

• Python

• EXE

3.14.2 Hosting Application or Service

Developers can create application and services using GridAPPS-D API and use following instruction to host it with
the platform. For example of application and service working with GridAPPS-D, please see: https://github.com/
GRIDAPPSD/gridappsd-sample-app and https://github.com/GRIDAPPSD/gridappsd-state-estimator

1. Create proper folder structure for the application or service.

Following is the recommended structure for applications or services working with gridappsd using sample-app as an
example:

For application:

.
README.md
my_app

app
[application exe or pythod code]

requirements.txt
my_app.config
setup.py

For service:

.
README.md
my_service

service
[service exe or pythod code]

requirements.txt
my_service.config
setup.py

Where config file is used by GridAPPS-D to launch the application or service from inside the gridappsd container.

Example config for application:

{
"id":"sample_app",
"description":"GridAPPS-D Sample Application app",
"creator":"PNNL",
"inputs":[],
"outputs":[],
"options": ["(simulationId)"],
"type":"PYTHON",

(continues on next page)

3.14. Hosting Application 51

https://github.com/GRIDAPPSD/gridappsd-sample-app
https://github.com/GRIDAPPSD/gridappsd-sample-app
https://github.com/GRIDAPPSD/gridappsd-state-estimator

GridAPPS-D Documentation, Release 1.0

(continued from previous page)

"execution_path": "sample_app/runsample.py",
"launch_on_startup":false,
"prereqs":["fncs","fncsgossbridge"],
"multiple_instances":true

}

Example config for service:

{
"id":"state-estimator",
"description":"State Estimator",
"creator":"PNNL",
"inputs":["/topic/goss.gridappsd.fncs.output","/topic/goss.gridappsd.se.input

→˓"],
"outputs":["/topic/goss.gridappsd.se.requests","/topic/goss.gridappsd.se.

→˓system_state"],
"static_args":["(simulationId)"],
"execution_path":"service/bin/state-estimator.out",
"type":"EXE",
"launch_on_startup":false,
"prereqs":[],
"multiple_instances":true,
"environmentVariables":[]

}

2. Clone the repository https://github.com/GRIDAPPSD/gridappsd-docker (refered to as gridappsd-docker repos-
itory) next to this repository (they should both have the same parent folder)

.
gridappsd-docker
gridappsd-sample-app

3. Add application or service to platform

In order to add your application/service to the container you will need to modify the docker-compose.yml file included
in the gridappsd-docker repository. Under the gridappsd service there is an example volumes leaf that is commented
out. Uncomment and modify these lines to add the path for your application and config file. Adding these lines will
mount the application/service on the container’s filesystem when the container is started.

For application:

volumes:
- ~/git/gridappsd-sample-app/sample_app:/gridappsd/applications/sample_app
- ~/git/gridappsd-sample-app/sample_app/sample_app.config:/gridappsd/
→˓applications/sample_app.config

volumes:
- ~/git/[my_app_directory]/[my_app]:/gridappsd/applications/[my_app]
- ~/git/[my_app_directory]/[my_app]/[my_app.config]:/gridappsd/applications/[my_

→˓app.config]

For service:

volumes:
- ~/git/gridappsd-sample-app/sample_app:/gridappsd/applications/sample_app
- ~/git/gridappsd-sample-app/sample_app/sample_app.config:/gridappsd/
→˓applications/sample_app.config

(continues on next page)

52 Chapter 3. Using GridAPPS-D

https://github.com/GRIDAPPSD/gridappsd-docker

GridAPPS-D Documentation, Release 1.0

(continued from previous page)

volumes:
- ~/git/[my_service_directory]/[my_service]:/gridappsd/services/[my_service]
- ~/git/[my_service_directory]/[my_service]/[my_service.config]:/gridappsd/

→˓services/[my_service.config]

3.14.3 How to start a service

Note: This process will be simplified in future releases so user could start a service through API and UI for a simulation
with or without an application.

Currently a service will be started by the platform only if it is a requirement for an application as described in the
application config file under prereqs key. By default gridappsd-sensor-service and gridappsd-voltage-violation services
are available in GridAPPS-D docker container.

In order to start a service with an application (sample app in this example) follow these steps:

1. Go into sample app container by executing

docker exec -it gridappsddocker_sample_app_1 bash

2. Inside sample app container execute following commands

apt-get update

apt-get install vim

4. Edit sample_app.config and add service id to the prereqs as shown below:

"prereqs":["gridappsd-sensor-simulator"]

Note: Service id should match the value of “id” in service config file.

5. Exit sample app container

6. Restart sample app docker container by executing

docker restart gridappsddocker_sample_app_1

7. Go into GridAPPS-D docker container by executing

docker exec -it gridappsddocker_gridappsd_1 bash

8. Start platform by executing :

./run-gridappsd.sh

Now when you start a simulation with sample app the service defined in prereqs will start as well.

3.14. Hosting Application 53

GridAPPS-D Documentation, Release 1.0

54 Chapter 3. Using GridAPPS-D

CHAPTER 4

System Configurations

TODO default values and description (conf under GOSS-GridAPPS-D, FNCS ports and simulator count)

55

GridAPPS-D Documentation, Release 1.0

56 Chapter 4. System Configurations

CHAPTER 5

GridAPPS-D Development Resources

This section is useful for developers for understanding or changing platform’s internal workings and for those wishing
to develop their own applications for GridAPPS-D. For developing application for GridAPPS-D platform see Using
GridAPPS-D .

5.1 Design

Design section desribes the conceptual design of GridAPPS-D’s managers. Each manager is resposible for executing
specific groupd of functions.

5.1.1 Process Manager

Process Manager is responsible for starting, managing and stopping processes. All the requests to start a process
like starting a simulation or querying a data store is received by Process Mananger. After receiving a request to start
a process it forwards the request to corresponding manager for execution. Process Manager keeps track of all the
processes and reports their status when requested.

This implements Internal Function Definition- 402 Process Manager

5.1.2 Log Manager

TBD

5.1.3 Simulation Manager

TBD

57

GridAPPS-D Documentation, Release 1.0

5.1.4 Configuration Manager

TBD

5.2 Eclipse IDE Setup

1. Download or clone the repository from github

a. Install github desktop https://desktop.github.com/ or sourcetree https://www.atlassian.com/software/
sourcetree/overview and Clone the GOSS-GridAPPS-D repository (https://github.com/GRIDAPPSD/
GOSS-GridAPPS-D)

b. Or download the source (https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/archive/master.zip)

2. Install java 1.8 SDK and set JAVA_HOME variable

3. Install Eclipse http://www.eclipse.org/downloads/packages/release/Mars/1 (Mars 4.5.1 or earlier, 4.5.2 appears
to have bugs related to bundle processing) TODO what about neon?

4. Open eclipse with workspace set to GOSS-GridAPPS-D download location, eg.
C:UsersusernameDocumentsGOSS-GridAPPS-D

5. Install BNDTools plugin: Help->Install New Software->Work with: http://dl.bintray.com/bndtools/bndtools/3.
0.0 and Install Bndtools 3.0.0 or earlier

6. Import projects into workspace

a. File->Import General->Existing Projects into workspace

b. Select root directory, GOSS-GridAPPS-D download location

c. Select cnf, pnnl.goss.gridappsd

7. If errors are detected, Right click on the pnnl.goss.gridappsd project and select release, then release all bundles

8. If you would like to you a local version of GOSS-Core (Optional)

a. Update cnf/ext/repositories.bnd

b. Select source view and add the following as the first line

c. aQute.bnd.deployer.repository.LocalIndexedRepo;name=GOSS Local Release;local=/GOSS-
Core2/cnf/releaserepo;pretty=true,

d. verify by switching to bndtools and verify that there are packages under GOSS Local Relase

9. Open pnnl.goss.gridappsd/bnd.bnd, Rebuild project, you should not have errors

10. Open pnnl.goss.gridappsd/run.bnd.bndrun and click Run OSGI

58 Chapter 5. GridAPPS-D Development Resources

https://desktop.github.com/
https://www.atlassian.com/software/sourcetree/overview
https://www.atlassian.com/software/sourcetree/overview
https://github.com/GRIDAPPSD/GOSS-GridAPPS-D
https://github.com/GRIDAPPSD/GOSS-GridAPPS-D
https://github.com/GRIDAPPSD/GOSS-GridAPPS-D/archive/master.zip
http://www.eclipse.org/downloads/packages/release/Mars/1
http://dl.bintray.com/bndtools/bndtools/3.0.0
http://dl.bintray.com/bndtools/bndtools/3.0.0

GridAPPS-D Documentation, Release 1.0

5.3 Execution Workflow

Process Manager - The workflow begins when a simulation request is sent to the request topic monitored by the Process
Manager, the process manager gathers the necessary configurations from the Configuration Manager. Then sends the
configuration to the simulation manager to run the simulation.

Configuration Manager - The configuration manager parses the request and builds the necessary configuration files. It
also uses the data manager to pull the model data from the CIM database.

Data Manager - The data manager accesses the CIM database to build the model files used by the simulator.

Simulation Manager - The simulation manager launches the simulator and other required applications such as the
FNCS bridge, FNCS, and the VoltVar application. It is in charge of managing the timing of the simulation and
reporting output from the simulation out to the simulation status topic.

FNCS Bridge - Serves as input and output from the simulator to the rest of GridAPPS-D, receives initialization,
timestep, update, and finalize requests from the simulation manager and other applications, such as voltvar. It also
publishes output from the simulator on a pre-defined topic for the simulation manager and other applications to sub-
scribe to.

Simulator - In this case GridLAB-D serves as the simulator.

Hosted Application - Applications can be developed to use the data generated by the simulation and submit feedback
and updates to the simulator. Two examples of this have been developed in RC1, the VoltVar application and a
vizualization application

5.3. Execution Workflow 59

GridAPPS-D Documentation, Release 1.0

Log Manager - Process Manager recieves a log message. It retrieves the username associated with the message and
forwards the message and username to Log Manager. Log Manager writes the message on a file and if store_to_db
key is true in log message then log manager calls the data manager to store the log message in the database.

5.4 CIM Documentation

This section summarizes the use of a reduced-order CIM1 to support feeder modeling for the North American circuits
and use cases considered in GridAPPS-D. The full CIM includes over 1100 tables in SQL, each one corresponding to
a UML class, enumeration or datatype. RC1 used approximately 100 such entities, mapped onto 100+ tables in SQL.
Subsequent versions of GridAPPS-D use a triple-store database, which is better suited for CIM [ref].

The CIM subset described here is based on iec61970cim17v23a_iec61968cim13v11, which formed the basis of a
release candidate for CIM100. This candidate CIM100 already includes changes proposed from the GridAPPS-D
project.

5.4.1 Class Diagrams for the Profile

Figure 1 through Figure 17 present the UML class diagrams generated from Enterprise Architect2. These diagrams
provide an essential roadmap for understanding:

1. How to ingest CIM XML from various sources into the database

2. How to generate native GridLAB-D input files from the database

For those unfamiliar with UML class diagrams:

1. Lines with an arrowhead indicate class inheritance. For example, in Figure 1, ACLineSegment inherits from
Conductor, ConductingEquipment, Equipment and then PowerSystemResource. ACLineSegment inherits all
attributes and associations from its ancestors (e.g., length), in addition to its own attributes and ancestors.

2. Lines with a diamond indicate composition. For example, in Figure 1, Substations make up a SubGeographical-
Region, which then make up a GeographicRegion.

3. Lines without a terminating symbol are associations. For example, in Figure 1, ACLineSegment has (through
inheritance) a BaseVoltage, Location and one or more Terminals.

4. Italicized names at the top of each class indicate the ancestor (aka superclass), in cases where the ancestor does
not appear on the diagram. For example, in Figure 1, PowerSystemResource inherits from IdentifiedObject.

Please see GridAPPSD_RC4.eap3 in the repository4 on GitHub for the latest updates. The EnterpriseArchitect file
includes a description of each class, attribute and association. It can also generate HTML documentation of the CIM,
with more detail than provided here.

The diagrammed UML associations have a role and cardinality at each end, source and target. In practice, only one
end of each association is profiled and implemented in SQL. In some cases, the figure captions indicate which end,
but see the CIM profile for specific definitions, as described in the object diagram section. Usually, the end with 0..1
multiplicity is implemented instead of the end with 0..* or 1..* multiplicity.

Nearly every CIM class inherits from IdentifiedObject, from which we use two attributes:

1. mRID is the “master identifier” that must be unique and persistent among all instances. It’s often used as the
RDF resource identifier, and is often a GUID.

1 See http://cimug.ucaiug.org/default.aspx and the EPRI CIM Primer at: http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=
000000003002006001

2 Suggest “Corporate Edition” from http://www.sparxsystems.com/ for working with CIM UML. The free CIMTool is still available at http:
//wiki.cimtool.org/index.h tml, but support is being phased out.

3 OSPRREYS is an older name for GridAPPS-D
4 https://github.com/GRIDAPPSD/Powergrid-Models/CIM

60 Chapter 5. GridAPPS-D Development Resources

http://cimug.ucaiug.org/default.aspx
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002006001
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002006001
http://www.sparxsystems.com/
http://wiki.cimtool.org/index.h
http://wiki.cimtool.org/index.h
https://github.com/GRIDAPPSD/Powergrid-Models/CIM

GridAPPS-D Documentation, Release 1.0

2. Name is a human-readable identifier that need not be unique.

Figure 1 shows how equipment is organized into a Feeder. Each piece of Equipment has Terminals that connect at
ConnectivityNodes, which represent the “buses”. Please note that in GridAPPS-D, we do not use TopologicalNode
at all. In some CIM use cases, primary for transmission, the TopologicalNode coalesces ConnectivityNodes that are
connected by buswork and closed switches into a single connection point. Instead, substation buswork models need
to explicitly include the low-impedance branches and switches between ConnectivityNodes. We assume that modern
distribution power flow solvers have no need of TopologicalNode.

Figure 1: Placement of ACLineSegment into a Feeder. In GridAPPS-D, the Feeder is the EquipmentContainer for
all power system components and the ConnectivityNodeContainer for all nodes. It’s energized from a Substation,
which is part of a SubGeographicalRegion and GeographicalRegion for proper context with other CIM models. For
visualization, ACLineSegment can be drawn from a sequence of PositionPoints associated via Location. The Terminals
are free-standing; two of them will “reverse-associate” to the ACLineSegment as ConductingEquipment, and each
terminal also has one ConnectivityNode. The Terminal:phases attribute is not used; instead, phases will be defined in
the ConductingEquipment instances. The associated BaseVoltage:nominalVoltage attribute is important for many of
the classes that don’t have their own rated voltage attributes, for example, EnergyConsumer.

5.4. CIM Documentation 61

GridAPPS-D Documentation, Release 1.0

Figure 2: There are four different ways to specify ACLineSegment impedances. In all cases, Conductor:length is
required. The first way is to specify the individual ACLineSegment attributes, which are sequence impedances and
admittances, leaving PerLengthImpedance null. The second way is to specify the same attributes on an associated
PerLengthSequenceImpedance, in which case the ACLineSegment attributes should be null. The third way is to as-
sociate a PerLengthPhaseImpedance, leaving the ACLineSegment attributes null. Only conductorCount from 1 to
3 is supported, and there will be 1, 3 or 6 reverse-associated PhaseImpedanceData instances that define the lower
triangle of the Z and Y matrices per unit length. The row and column attributes must agree with ACLineSegment-
Phase:sequenceNumber. The fourth way to specify impedance is by wire/cable and spacing data, by association to
WireSpacingInfo and WireInfo. If there are ACLineSegmentPhase instances reverse-associated to the ACLineSeg-
ment, then per-phase modeling applies. There are several use cases for ACLineSegmentPhase: 1) single-phase or
two-phase primary, 2) low-voltage secondary using phases s1 and s2, 3) associated WireInfo data where the WireS-
pacingInfo association exists, 4) assign specific phases to the matrix rows and columns in PerLengthPhaseImpedance.
It is the application’s responsibility to propagate phasing through terminals to other components, and to identify any
miswiring. (Note: this profile does not use WireAssemblyInfo, nor the fromPhase and toPhase attributes of Pha-

62 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

seImpedanceData.)

Figure 3: The EnergySource is balanced three-phase, balanced two-phase or single-phase Thevenin source.
GridAPPS-D use a three-phase EnergySource to represent the transmission system. See Figures 13-14 for DER mod-
eling. The EnergyConsumer is a ZIP load, possibly unbalanced, with an associated LoadResponse instance defining
the ZIP coefficients. For three-phase delta loads, the phaseConnection is D and the three reverse-associated Ener-
gyConsumerPhase instances will have phase=A for the AB load, phase=B for the BC load and phase=C for the AC
load. A three-phase wye load may have either Y or Yn for the phaseConnection. Single-phase and two-phase loads,
including secondary loads, should have phaseConnection=I (for individual).

5.4. CIM Documentation 63

GridAPPS-D Documentation, Release 1.0

Figure 4: There are eight different kinds of Switch supported in the CIM, and all of them have zero impedance. They
would all behave the same in power flow analysis, and all would require many more attributes than are defined in
CIM to support protection analysis. The use cases for SwitchPhase include 1) single-phase, two-phase and secondary
switches, 2) one or two conductors open in a three-phase switch or 3) transpositions, in which case phaseSide1 and
phaseSide2 would be different. RatedCurrent may different among the phases, e.g., individual fuses on the same pole
may have different ratings.

64 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Figure 5: On the left, LinearShuntCompensator and LinearShuntCompensatorPhase define capacitor banks, in a way
very similar to EnergyConsumer in Figure 3. The kVAR ratings must be converted to susceptance based on the
nominal voltage, nomU. Note that aVRDelay is really a capacitor control parameter, to be used in conjunction with
RegulatingControl on the right-hand side. The RegulatingControl associates to the controlled capacitor bank via
RegulatingCondEq, and to the monitored location via Terminal. There is no support for a PT or CT ratio, so target-
Deadband and targetValue have to be in primary volts, amps, vars, etc. Capacitor banks may _respond_ to any of the
RegulatingControlModeKind choices, but it’s not expected that capacitor switching will successfully regulate to the
targetValue.

5.4. CIM Documentation 65

GridAPPS-D Documentation, Release 1.0

Figure 6: PowerTransformers may be modeled with or without tanks, and in both cases vectorGroup should be spec-
ified according to IEC transformer standards (e.g., Dy1 for many substation transformers). The case without tanks

66 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

is most suitable for balanced three-phase transformers that won’t reference catalog data; any other case should use
tank-level modeling. In the tankless case, each winding will have a PowerTransformerEnd that associates to both
a Terminal and a BaseVoltage, and the parent PowerTransformer. The impedance and admittance parameters are
defined by reverse-associated TransformerMeshImpedance between each pair of windings, and a reverse-associated
TransformerCoreAdmittance for one winding. The units for these are ohms and siemens based on the winding volt-
age, rather than per-unit. WindingConnection is similar to PhaseShuntConnectionKind, adding Z and Zn for zig-zag
connections and A for autotranformers. If the transformer is unbalanced in any way, then TransformerTankEnd is
used instead of PowerTransformerEnd, and then one or more TransformerTanks may be used in the parent Pow-
erTransformer. Some of the use cases are 1) center-tapped secondary, 2) open-delta and 3) EHV transformer banks.
Tank-level modeling is also required if using catalog data, as described with Figure 9. (TransformerStarImpedance and
several PowerTransformer attributes are not used. Star impedance attributes on PowerTransformerEnd and magnetic
saturation attributes on TransformerEnd are not used.)

Figure 7: A RatioTapChanger can represent a transformer tap changer on the associated TransformerEnd. The Ratio-
TapChanger has some parameters defined in a direct-associated TapChangerControl, which inherits from Regulating-
Control some of the same attributes used in capacitor controls (Figure 5). Therefore, a line voltage regulator in CIM
includes a PowerTransformer, a RatioTapChanger, and a TapChangerControl. The CT and PT parameters of a voltage
regulator can only be described via the AssetInfo mechanism, described with Figure 8. The RegulationControl.mode
must be voltage. (Note: RegulationSchedule, RatioTapChangerTable and PhaseTapChanger are not used.)

5.4. CIM Documentation 67

GridAPPS-D Documentation, Release 1.0

Figure 8: Many distribution software packages use the concept of catalog data, aka library data, especially for lines and
transformers. We use the AssetInfo package to implement this in CIM. Here, the TapChangerInfo class includes the
CT rating, CT ratio and PT ratio parameters needed for line drop compensator settings in voltage regulators. Catalog
data is a one-to-many relationship. In this case, many TapChangers can share the same TapChangerInfo data, which
saves space and provides consistency. Older versions of CIM had many-to-many catalog relationships, but now only
one AssetDataSheet may be associated per Equipment. (Note: many datasheet attributes are not shown here and not
yet used in GridAPPS-D).

68 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Figure 9: The catalog mechanism for transformers will associate a TransformerTank (Figure 6) with Transformer-
TankInfo (here), via the AssetDataSheet mechanism described in Figure 8. The PowerTransformerInfo collects Trans-
formerTankInfo by reverse association, but it does not link with PowerTransformer. In other words, the physical
tanks are cataloged because transformer testing is done on tanks. One possible use for PowerTransformerInfo is
to help organize the catalog. It’s important that TransformerEndInfo:endNumber (here) properly match the Trans-
formerEnd:endNumber (Figure 6). The shunt admittances are defined by NoLoadTest on a winding / end, usually just
one such test. The impedances are defined by a set of ShortCircuitTests; one winding / end will be energized, and one
or more of the others will be grounded in these tests. (OpenCircuitTest is not used, nor are the current, power and
voltage attributes of ShortCircuitTest).

5.4. CIM Documentation 69

GridAPPS-D Documentation, Release 1.0

Figure 10: The catalog / library mechanism for ACLineSegment will have a WireSpacingInfo associated as in Figure
9. This will indicate whether the line is overhead or underground. phaseWireCount and phaseWireSpacing define
optional bundling, so these will be 1 and 0 for distribution. The number of phase and neutral conductors is actually de-
fined by the number of reverse-associated WirePosition instances. For example, a three-phase line with neutral would
have four of them, sequenceNumber from 1 to 4. Each WirePosition’s phase is determined by the ACLineSegment-
Phase with matching sequenceNumber, i.e., the phases need not be numbered in any particular order. On the left-hand
side, concrete classes OverheadWireInfo, TapeShieldCableInfo and ConcentricNeutralCableInfo may be associated to

70 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

ACLineSegmentPhase. It’s the application’s responsibility to calculate impedances from this data. In particular, soil
resistivity and dielectric constants are not included in the CIM. Typical dielectric constant values might be defined for
each WireInsulationKind.

Figure 11: The CIM state variables package was designed to report power flow solution values on the distribution
system. It could also report state estimator solutions as a special case of power flow solutions. Voltages are measured
on ConnectivityNodes (i.e., not TopologicalNodes), power flows are measured at Terminals into the ConductingEquip-
ment, step positions are measured on TapChangers, status is measured on ConductingEquipment, and on/off state is
measured on ShuntCompensators for Switches. The “injections” have been included here, but there may not be a use
case for them in distribution. On the other hand, solution values for current are very common in distribution system
applications. These should be represented as SvPowerFlow values at the solved SvVoltage.

5.4. CIM Documentation 71

GridAPPS-D Documentation, Release 1.0

Figure 12: Measurements are defined in the Meas package. They differ from the state variables package, in that the
values are measured here and not calculated or estimated. Each Measurement is associated to a PowerSystemRe-
source, and in GridAPPS-D for now, also a Terminal that belongs to the same PowerSystemResource. (Non-electrical
measurements, for example weather, would not have the Terminal). The measurementType is a string code from
IEC 61850, with PNV, VA, A and POS currently supported. The Measurement has a name, mRID, and phases. In
GridAPPS-D, each phase is measured individually so multi-phase codes like ABC should not be used. Pos mea-
surements will be Discrete, for such things as tap position, switch position, or capacitor bank position. The others
will be Analog, with magnitude and optional angle in degrees. Each MeasurementValue will have a timeStamp and
mRID inherited from IdentifiedObject, so the values can be traced. (Note: IOPoint is a placeholder class with no
attributes, inherting from IdentifiedObject. Further, it’s acceptable to supply an empty or short non-unique name for
each MeasurementValue.)

72 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Figure 13: Power Electronics attributes are the minimum needed to support a time series power flow solution. For
simple short-circuit calculations, maxIFault is provided as the inverter fault contribution in per-unit of rated current.
When PowerElectronicsConnectionPhase is not present, the inverter is assumed to be balanced three-phase. The type
of associated PowerElectronicsUnit determines whether the inverter is for solar or storage (wind is not currently used in
GridAPPS-D). If the inverter employs a SmartInverterMode of voltVar, voltWatt or loadFollowing (storage only), then
a Terminal should be associated through RegulatingControl, especially for loadFollowing. If the inverter will regulate
its own Terminal, then the explicit Terminal association may not be needed. However, there are more attributes needed
in CIM to define smart inverter functions. This might be done in harmonization with IEC 61850, which does define
smart inverter function parameters. The existing CIM RegulatingControl attributes are probably not applicable, so
they have been hidden in Figure 13.

5.4. CIM Documentation 73

GridAPPS-D Documentation, Release 1.0

Figure 14: Rotating Machines are three-phase balanced, either synchronous or asynchronous. The SynchronousMa-
chine ikk attribute and most of the AsynchronousMachine attributes are provided to support short-circuit calculations
according to IEC 60909. The GeneratingUnit class is needed to define minimum and maximum power limits. In
the full CIM, GeneratingUnit is an abstract class with descendants HydroUnit, ThermalUnit and NuclearUnit, but in
GridAPPS-D we don’t currently distinguish between those types. If the SynchronousMachine regulates voltage, then
the RegulatingControl (with attribute values) and Terminal associations need to be provided.

74 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Figure 15: The IEEE1547Info class describes nameplate information, including ratings, which shall be available for
DER that complies with IEEE Std. 1547-2018. Both inverters (Figure 13) and rotating machines (Figure 14) can
reference this class for nameplate information in the network model. Preliminary values for these attributes would be
available from an application to interconnect DER, and then updated as the project moves through commissioning to
operational status.

5.4. CIM Documentation 75

GridAPPS-D Documentation, Release 1.0

Figure 16: Houses are used to create 2nd-order thermal models of the building envelope, with internal ThermostatCon-
troller and heating/cooling systems. The purpose is to introduce realistic load stochastic behaviors that are independent
from and faster-moving than data typically available to an electric utility. To enable repeatable simulations, the House
data structures have been defined here as a CIM extension. The House must be attached to one EnergyConsumer
that incorporates other end-use loads, and connects to the distribution system. The House attributes are the minimum
necessary to define a GridLAB-D house model, and during simulation, the house heating/cooling system will add to
the ServicePanel loads. Therefore, the application should reduce the nominal value of EnergyConsumer.p in order to
“make room” for the heating/cooling load that will switch on and off, responding to the ThermostatController and the
weather. The ThermostatController contains the minimum attributes needed for PNNL’s double-ramp, double-auction
market mechanism. In the future, this will be harmonized with CIM market structures in the 62235 package.

76 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Figure 17: Faults include open conductors and short circuits (optionally including ground) on any combination of
phases. In GridAPPS-D, every Fault will be an EquipmentFault associated to a Terminal (i.e., we are not using
LineFault, which requires a lengthFromTerminal1 attribute). The occurredDateTime supports the scripting of fault
sequences. The stopDateTime is optional. If provided, it will be the time at which a sustained fault has been repaired.
If not provided, then the fault is temporary and will clear itself as soon as it’s been deenergized.

5.4.2 Typical Queries

These queries focus on requirements of the first volt-var application.

1. Capacitors (Figure 5, Figure 18, Figure 19, Figure 20)

a. Create a list of capacitors with bus name (Connectivity Node in Figure 1), kVAR per phase, control mode,
target value and target deadband

b. For a selected capacitor, update the control mode, target value, and target deadband

2. Regulators (Figure 7, Figure 8, Figure 18, Figure 35)

a. List all transformers that have a tap changer attached, along with their bus names and kVA sizes

b. Given a transformer that has a tap changer attached, list or update initialDelay, step, subsequentDelay,
mode, targetDeadband, targetValue, limitVoltage, lineDropCompensation, lineDropR, lineDropX, reverse-
LineDropR and reverseLineDropX

3. Transformers (Figure 6, Figure 9)

5.4. CIM Documentation 77

GridAPPS-D Documentation, Release 1.0

a. Given a bus name or load (Figure 3), find the transformer serving it (Figure 22, Figure 25)

b. Find the substation transformer, defined as the largest transformer (by kVA size and or highest voltage
rating)

c. List the transformer catalog (Figure 9, Figure 26) with name, highest ratedS, list of winding ratedU in
descending order, vector group (https://en.wikipedia.org/wiki/Vector_group used with connectionKind and
phaseAngleClock), and percent impedance

d. List the same information as in item c, but for transformers (Figure 6) and also retrieving their bus names.
Note that a transformer can be defined in three ways

i. Without tanks, for three-phase, multi-winding, balanced transformers (Figure 22 and Figure 23).

ii. With tanks along with TransformerTankInfo (Figure 9) from a catalog of “transformer codes”, which
may describe balanced or unbalanced transformers. See Figure 25 and Figure 26.

iii. With tanks for unbalanced transformers, and TransformerTankInfo created on-the-fly. See Figure 25
and Figure 26.

e. Given a transformer (Figure 6), update it to use a different catalog entry (TransformerTankInfo in Figure
9)

4. Lines (Figure 2, Figure 10, Figure 18)

a. List the line and cable catalog entries that meet a minimum ratedCurrent and specific WireUsageKind.
For cables, be able to specify tape shield vs. concentric neutral, the WireInsulationKind, and a minimum
insulationThickness. (Figure 33)

b. Given a line segment (Figure 2) update to use a different linecode (Figure 10, Figure 32)

c. Given a bus name, list the ACLineSegments connected to the bus, along with the length, total r, total x, and
phases used. There are four cases as noted in the caption of Figure 2, and see Figure 29 through Figure 32.

d. Given a bus name, list the set of ACLineSegments (or PowerTransformers and Switches) completing a path
from it back to the EnergySource (Figure 3). Normally, the applications have to build a graph structure in
memory to do this, so it would be very helpful if a graph/semantic database can do this.

5. Voltage and other measurements (Figure 1, Figure 11)

a. Given a bus, attach a voltage solution point (SvVoltage, Figure 36)

b. List all voltage solution points and their buses, and for each bus, list the phases actually present

c. For tap changer position (SvTapStep, Figure 37), attach and list values as in items a and b

d. For capacitor switch status (SvShuntCompensatorSections, Figure 38), attach and list values as in items a
and b

6. Loads (Figure 3, Figure 34)

a. Given a bus name, list and total all of the loads connected by phase, showing the total p and q, and the
composite ZIP coefficients

7. Switching (Figure 4, Figure 28)

a. Given a bus name, trace back to the EnergySource and list the switches encountered, grouped by type (i.e.
the leaf class in Figure 4). Also include the ratedCurrent, breakingCapacity if applicable, and open/close
status. If SwitchPhase is used, show the phasing on each side and the open/close status of each phase.

b. Given switch, toggle its open/close status.

78 Chapter 5. GridAPPS-D Development Resources

https://en.wikipedia.org/wiki/Vector_group

GridAPPS-D Documentation, Release 1.0

5.4.3 Object Diagrams for Queries

This section contains UML object diagrams for the purpose of illustrating how to perform typical queries and updates.
For those unfamiliar with UML object diagrams:

1. Each object will be an instance of a class, and more than one instance of a class can appear on the diagram. For
example, Figure 18 shows two ConnectivityNode instances, one for each end of a ConductingEquipment.

2. The object name (if specified and important) appears before the colon (:) above the line, while the UML class
appears after the colon. Every object in CIM will have a unique ID, and a name (not necessarily unique), even
if not shown here.

3. Some objects may be shown with run-time state below the line. These are attribute value assignments, drawn
from those available in the UML class or one of the class ancestors. The object may have more attribute
assignments, but only those directly relevant to the figure captions are shown in the diagrams of this section.

4. Object associations are shown with solid lines, role names, and multiplicities similar to the UML class diagrams.
One important difference is that only one way of navigating a particular association will be defined in the profile.
For example, the lower left corner of Figure 1 shows a two-way link between Terminal and ConnectivityNode in
the UML class diagram. However, Figure 18 shows that only one direction has been defined in the profile. Each
Terminal has a direct reference to its corresponding ConnectivityNode. In order to navigate the reverse direction
from ConnectivityNode to Terminal, some type of conditional query would be required. In other words, the
object diagrams in this section indicate which associations can actually be used in GridAPPS-D.

5. In some cases, the multiplicities on the object diagrams are more restrictive than on the class diagrams, due to
profiling. For example, EnergyConsumer and ShuntCompensator must have exactly one Terminal, not 1..*.

The object diagrams are intended to help you break down the CIM queries into common sub-tasks. For example,
query #1 works with capacitors. It’s always possible to select a capacitor (aka LinearShuntCompensator) by name. In
order to find the capacitor at a bus, say “bus1” in Figure 12, one would retrieve all Terminals having a Connectivi-
tyNode reference to “bus1”. Each of those Terminals will have a ConductingEquipment reference, and you want the
Terminal(s) for which that reference is actually a LinearShuntCompensator. In this CIM profile, only leaf classes (e.g.
LinearShuntCompensator) will be instantiated, never base classes like ConductingEquipment. There can be more than
one capacitor at a bus, more than one load, more than one line, etc.

Figure 18: In order to traverse buses and components, begin with a ConnectivityNode (left). Collect all terminals

5.4. CIM Documentation 79

GridAPPS-D Documentation, Release 1.0

referencing that ConnectivityNode; each Terminal will have one-to-one association with ConductingEquipment, of
which there are many subclasses. In this example, the ConductingEquipment has a second terminal referencing the
ConnectivityNode called bus2. There are applications for both Depth-First Search (DFS) and Bread-First Search (BFS)
traversals. Note 1: the Terminals have names, but these are not useful. In some cases, the Terminal sequenceNumber
attribute is needed to clearly identify ends of a switch. Note 2: in earlier versions of GridAPPS-D, we had one-to-
one association of TopologicalNode and ConnectivityNode, but these are no longer necessary. Note 3: transformers
are subclasses of ConductingEquipment, but we traverse connectivity via transformer ends (aka windings). This is
illustrated later.

In order to find capacitors (or anything else) associated with a particular “feeder”, Figure 19 shows that you would
query for objects having EquipmentContainer reference to the Feeder object. In GridAPPS-D, we only use Feeder
for equipment container in CIM, and this would correspond to one entire GridLAB-D model. There is also a Base-
Voltage reference that will have the system nominal voltage for the capacitor’s location. However, in order to work
with equipment ratings you should use ratedS and ratedU attributes where they exist, particularly for capacitors and
transformers. These attributes are often slightly different than the “system voltage”. Most of the attribute units in CIM
are SI, with a few exceptions like percent and kW values on transformer test sheets (i.e., CIM represents the test sheet,
not the equipment).

Figure 19: All conducting equipment lies within an EquipmentContainer, which in GridAPPS-D, will be a Feeder
object named after the feeder. It also has reference to a BaseVoltage, which is typically one of the ANSI preferred
system voltages. Power transformers are a little different, in that each winding (called “end” in CIM) has reference
to a BaseVoltage. Note that equipment ratings come from the vendor, and in this case ratedU is slightly different
from nominalVoltage. All conducting equipment has a Location, which contains XY coordinates (see Figure 1). The
Location is useful for visualization, but is not essential for a power flow model.

Completing the discussion of capacitors, Figure 20 provides two examples for single-phase, and three-phase with
local voltage control. As shunt elements, capacitors have only one Terminal instance. Loads and sources have one
terminal, lines and switches have two terminals, and transformers have two or more terminals. Examples of all those
are shown later. In Figure 20, the capacitor’s kVAR rating will be based on its nameplate ratedU, not the system’s
nominalVoltage.

Often, the question will arise “what phases exist at this bus?”.There is no phasing explicitly associated with a Con-
nectivityNode, and we don’t use the Terminal phases attribute in preference to the “wires phase model” classes. For
example, thephases at a line segment terminal can always be obtained from the ACLineSegmentPhase instances. To
answer the question about bus phasing, we’d have to query for all ConductingEquipment instances having Terminals
connected to that bus, as in Figure 18. The types of ConductingEquipment that may have individual phases include
LinearShuntCompensators (Figure 20), ACLineSegments, PowerTransformers (via TransformerEnds), EnergyCon-
sumers, EnergySources, PowerElectronicsConnections, and descendants of Switch. If the ConductingEquipment has

80 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

such individual phases, then add those phases to list of phases existing at the bus. If there are no individual phases,
then ABC all exist at the bus. Note this doesn’t guarantee that all wiring to the bus is correct; for example, you
could still have a three-phase load served by only a two-phase line, which would be a modeling error. In Figure 20,
we’d find phase C at Bus611 and phases ABC at Bus675. Elsewhere in the model, there should be ACLineSegments,
PowerTransformers or Switch descendants delivering phase C to Bus611, all three phases ABC to Bus675.

Figure 20: Capacitors are called LinearShuntCompensator in CIM. On the left, a 100 kVAR, 2400 V single-phase
bank is shown on phase C at bus 611. bPerSection = 100e3 / 2400^2 [S], and the bPerSection on LinearShuntCompen-
satorPhase predominates; these values can differ among phases if there is more than one phase present. On the right, a
balanced three-phase capacitor is shown at bus 675, rated 300 kVAR and 4160 V line-to-line. We know it’s balanced
three phase from the absence of associated LinearShuntCompensatorPhase objects. bPerSection = 300e4 / 4160^2
[S]. This three-phase bank has a voltage controller attached with 2400 V setpoint and 240 V deadband, meaning the
capacitor switches ON if the voltage drops below 2280 V and OFF if the voltage rises above 2520 V. These voltages
have to be monitored line-to-neutral in CIM, with no VT ratio. In this case, the control monitors the same Terminal
that the capacitor is connected to, but a different conducting equipment’s Terminal could be used. The control delay
is called aVRDelay in CIM, and it’s an attribute of the LinearShuntCompensator instead of the RegulatingControl. It
corresponds to “dwell time” in GridLAB-D.

Figure 21 through Figure 26 illustrate the transformer query tasks, plus Figure 35 for attached voltage regulators. The
autotransformer example is rated 500/345/13.8 kV and 500/500/50 MVA, for a transmission system. The short circuit
test values are ZHL=10%, ZHT=25% and ZLT=30%. The no-load test values are 0.05% exciting current and 0.025%
no-load losses. These convert to r, x, g and b in SI units, from ZLT= Urated* Urated/ Srated, where Sratedand Uratedare based
on the “from” winding (aka end). The same base quantities would be used to convert r, x, g and b back to per-unit or
percent. The open wye – open delta impedances are already represented in percent or kW, from the test reports.

5.4. CIM Documentation 81

GridAPPS-D Documentation, Release 1.0

Figure 21: Autotransformer with delta tertiary winding acts like a wye-wye transformer with smaller delta tertiary.
The vector group would be Yynd1 or Yyd1. For analyses other than power flow, it can be represented more accurately
as the physical series (n1) – common (n2) connection, with a vector group Yand1. In either case, it’s a three-winding
transformer.

Figure 22: A three-winding autotransformer is represented in CIM as a PowerTransformer with three PowerTrans-
formerEnds, because it’s balanced and three-phase. The three Terminals have direct ConductingEquipment references
to the PowerTransformer, so you can find it from bus1, busX or busY. However, each PowerTransformerEnd has
a back-reference to the same Terminal, and it’s own reference to BaseVoltage (Figure 13); that’s how you link the
matching buses and windings, which must have compatible voltages. Terminals have a sequenceNumber, but the Pow-
erTransformerEnd’s endNumber is what establishes correct linkage to catalog data as discussed later. By convention,
ends with highest ratedU have the lowest endNumber, and endNumber establishes that end’s place in the vectorGroup.

82 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Figure 23: Power transformer impedances correspond to the three-winding autotransformer example of Figure 15 and
Figure 16. There are three instances of TransformerMeshImpedance connected pair-wise between the three windings
/ ends. The x and r values are in Ohms referred to the end with highest ratedU in that pair. There is just one Trans-
formerCoreAdmittance, usually attached to the end with lowest ratedU, and the attribute values are Siemens referred
to that end’s ratedU.

Figure 24: Open wye - open delta transformer banks are used to provide inexpensive three-phase service to loads, by
using only two single-phase transformers. This is an unbalanced transformer, and as such it requires tank modeling
in CIM. Physically, the two transformers would be in separate tanks. Note that Tank A is similar to the residential
center-tapped secondary transformer, except the CIM phases for the secondary would include s1 and s2 instead of A
and B.

5.4. CIM Documentation 83

GridAPPS-D Documentation, Release 1.0

Figure 25: Unbalanced PowerTransformer instances comprise one or more TransformerTanks, which own the Trans-
formerTankEnds. Through the ends, wdgHi collects phases ABN and busLo collects phases ABCN. Typically, phase
C will also exist at wdgHi, but this transformer doesn’t require it. We still assign vectorGroup Yd1 to the supervising
PowerTransformer, as this is the typical case. The modeler should determine that. By comparison to Figure 24, there is
a possible ambiguity in how endA3 represents the polarity dot at the neutral end of Wdg A3. An earlier CIM proposal
would have assigned phaseAngleClock = 6 on wdgA3, but the attribute was removed from TransformerTankEnd. It
may not be possible to infer the correct winding polarities from the vectorGroup in all cases. There is a phaseAngle-
Clock attribute on TransformerTankEndInfo, but that represents a shelf state of the tank, not necessarily connections
in the field. Therefore, it may be necessary to propose the phaseAngleClock attribute for TransformerTankEnd.

84 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Figure 26: This Asset catalog example defines the impedances for Tank B of the open wye – open delta bank. This
is a 50 kVA, 7200 / 240 V single-phase transformer. It has 1% exciting current and 0.4 kW loss in the no-load test,
plus 2.1% reactance and 0.5 kW loss in the short-circuit test. A multi-winding transformer could have more than
one grounded end in a short-circuit test, but this is not common. The catalog data is linked with an AssetDataSheet
association shown to the left. Furthermore, endNumber on the TransformerEndInfo has to match endNumber on
the TransformerTankEnd instances associated to Tank B. Instead of catalog information, we could have used mesh
impedance and core admittance as in Figure 18, but we’d have to convert the test sheets to SI units and we could not
share data with other TransformerTank instances, both of which are inconvenient.

Figure 27 through Figure 33 illustrate the query tasks for ACLineSegments and Switches, which will define most of
the circuit’s connectivity. The example sequence impedances were based on Z1 = 0.1 + j0.8 Ω/mile and Z0 = 0.5 + j2.0
Ω /mile. For distribution systems, use of the shared catalog data is more common, either pre-calculated matrix (Figure
31) or spacing and conductor (Figure 32 and Figure 33). In both cases, impedance calculation is outside the scope of
CIM (e.g. GridLAB-D internally calculates line impedance from spacing and conductor data).

5.4. CIM Documentation 85

GridAPPS-D Documentation, Release 1.0

Figure 27: An ACLineSegment with two phases, A and C. If there are no ACLineSegmentPhase instances that asso-
ciate to it, assume it’s a three-phase ACLineSegment. This adds phases AC to bus671 and bus684.

Figure 28: This 50-Amp load break switch connects phases AC between busLeft and busRight. Without associated
SwitchPhase instances, it would be a three-phase switch. This switch also transposes the phases; A on side 1 connects
with C on side 2, while C on side 1 connects with A on side 2. This is the only way of transposing phases in
CIM. Note the Terminal.sequenceNumber is essential to differentiate phaseSide1 from phaseSide2. Also note that
LoadBreakSwitch has the open attribute inherited from Switch, while SwitchPhase has the converse closed attribute.
In order to open and close the switch, these attributes would be toggled appropriately. See Figure 4 for other types of
switch.

86 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Figure 29: This is a balanced three-phase ACLineSegment between bus632 and bus671, 2000 feet or 609.6 m long.
Sequence impedances are specified in ohms, as attributes on the ACLineSegment. This is a typical pattern for trans-
mission lines, but not distribution lines.

Figure 30: The impedances from Figure 24 were divided by 609.6 m, to obtain ohms per meter for seqCat1. Utilities
often call this a “line code”, and other ACLineSegment instances can share the same PerLengthImpedance. A model
imported into the CIM could have many line codes, not all of them used in that particular model. However, those line
codes should be available for updates by reassigning PerLengthImpedance.

5.4. CIM Documentation 87

GridAPPS-D Documentation, Release 1.0

Figure 31: This is a two-phase line segment from bus671 to bus684 using a line code, which has been specified
using a 2x2 symmetric matrix of phase impedances per meter, instead of sequence impedances per meter. This is
more common for distribution than either Figure 29 or Figure 30. It’s distinguished from Figure 30 by the fact that
PerLengthImpedance references an instance of PerLengthPhaseImpedance, not PerLengthSequenceImpedance. The
conductorCount attribute tells us it’s a 2x2 matrix, which will have two unique diagonal elements and one distinct
off-diagonal element. The elements are provided in three PhaseImpedanceData instances, which are named here for
clarity as Z11, Z12 and Z22. However, only the row and column attributes are meaningful to identify the matrix
element. In this example, Z11 and Z22 are slightly different. In order to swap phases A and C, we would swap the
sequenceNumber values on the ACLineSegmentPhase instaces. As presented here, mtx604 can apply to phasing AB,
BC or AC.

88 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Figure 32: The two-phase ACLineSegment impedance defined by sharing wire and spacing data from a catalog. Each
ACLineSegmentPhase links to an OverheadWireInfo instance via the AssetDataSheet association. If the neutral (N)
is present, we have to specify its wire information for a correct impedance calculation. In this case, ACN all use the
same wire type, but they can be different, especially for the neutral. Similarly, the WireSpacingInfo associates to the
ACLineSegment itself via a AssetDataSheet assocation.

5.4. CIM Documentation 89

GridAPPS-D Documentation, Release 1.0

Figure 33: The upper five instances define catalog attributes for Figure 27. The WirePosition xCoord and yCoord
units are meters, not feet, and they include sequenceNumber assignments to match ACLineSegmentPhase sequen-
ceNumbers. The phaseWireSpacing and phaseWireCount attributes are for sub-conductor bundling on EHV and UHV
transmission lines; bundling is not used on distribution. The number of WirePositions that reference spc505acn de-
termine how many wires need to be assigned. Eliminating the neutral, this would produce a 2x2 phase impedance
matrix. Although the pattern appears general enough to support multiple neutrals and transmission overbuild, the CIM
doesn’t actually have the required phasing codes. When isCable is true, the WirePosition yCoord values would be
negative for underground depth. To find overhead wires of a certain size or ampacity, we can put query conditions on
the ratedCurrent attribute. To find underground conductors, we query the ConcentricNeutralCableInfo or TapeShield-
CableInfo instead of OverheadWireInfo. All three inherit the ratedCurrent attribute from WireInfo. Cables don’t yet
have a voltage rating in CIM AssetInfo, but you can use insulationThickness as a proxy for voltage rating in queries.
Here, 5.588 mm corresponds to 220 mils, which is a common size for distribution.

Figure 34 illustrates the loads, which are called EnergyConsumer in CIM. The houses and appliances from GridLAB-
D are not supported in CIM. Only ZIP loads can be represented. Further, any load schedules would have to be defined
outside of CIM. Assume that the CIM loads are peak values.

Figure 35 illustrates the voltage regulator function. Note that GridLAB-D combines the regulator and transformer
functions, while CIM separates them. Also, the CIM provides voltage and current transducer ratios for tap changer
controls, but not for capacitor controls.

Figure 36 through Figure 38 illustrate how solved values can be attached to buses or other components.

90 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Figure 34: The three-phase load (aka EnergyConsumer) on bus671 is balanced and connected in delta. It has no ratedU
attribute, so use the referenced BaseVoltage (Figure 19) if a voltage level is required. On the right, a three-phase
wye-connected unbalanced load on bus675 is indicated by the presence of three EnergyConsumerPhase instances
referencing UnbalancedLoad. For consistency in searches and visualization, UnbalancedLoad.p should be the sum
of the three phase values, and likewise for UnbalancedLoad.q. In power flow solutions, the individual phase values
would be used. Both loads share the same LoadResponse instance, which defines a constant power characteristic
for both P and Q, because the percentages for constant impedance and constant current are all zero. The two other
most commonly used LoadResponseCharacteristics have 100% constant current, and 100% constant impedance. Any
combination can be used, and the units don’t have to be percent (i.e., use a summation to determine the denominator
for normalization).

5.4. CIM Documentation 91

GridAPPS-D Documentation, Release 1.0

Figure 35: In CIM, the voltage regulator function is separated from the tap-changing transformer. The IEEE 13-
bus system has a bank of three independent single-phase regulators at busRG60, and this example shows a Ra-
tioTapChanger attached to the regulator on phase A, represented by the TransformerTankEnd having phases=A or
phases=AN. See Figure 25 for a more complete picture of TransformerTankEnds, or Figure 22 for a more complete
picture of PowerTransformerEnds. Either one can be the TransformerEnd in this figure, but with a PowerTrans-
formerEnd, all three phase taps would change in unison (i.e. they are “ganged”). Most regulator attributes of interest
are found in RatioTapChanger or TapChangerControl instances. However, we need the AssetDataSheet mechanism
to specify ctRatio, ptRatio and ctRating values. These are inherent to the equipment, whereas the attributes of Ra-
tioTapChanger and TapChangerControl are all settings per instance. For the IEEE 13-bus example, there would be
separate RatioTapChanger and TapChangerControl instances for phases B and C.

Figure 36: In this profile, a solved voltage value attaches to ConnectivityNode in GridAPPS-D. Positive sequence or
phase A is implied, unless the phase attribute is specified.

92 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Figure 37: SvTapStep links to a TransformerEnd indirectly, through the RatioTapChanger. There is no phasing ambi-
guity because TransformerTankEnd has its phases attribute, while PowerTransformerEnd always includes ABC. Units
for SvTapStep.position are per-unit.

Figure 38: The on/off value for a capacitor bank attaches directly to LinearShuntCompensator. If the phase attribute
is not specified, then this value applies to all phases.

5.4.4 Metering Relationship to Loads in the CIM

Figure 39 shows how emulated trouble calls will be connected to loads (EnergyConsumers) for test scenarios. The
TroubleTicket is associated with Customer, CustomerAgreement and UsagePoint, which can then be associated to
Equipment or any of its descendants. Figure 39 shows the linkage to EnergyConsumer or EnergySource, but it can
also be linked to RegulatingCondEq (e.g., rotating machine and inverter-based DER). There are many attributes of
Customer, CustomerAgreement and UsagePoint that are not yet used in GridAPPS-D, and not shown in Figure 40.
These would be important for future metering and customer management applications. For now, the only TroubleT-
icket attributes to be used are dateTimeOfReport, resolvedDateTime and troubleKind. The PNNLTroubleCallKind
was added because the existing troubleCode attribute is a non-standardized String. However, the comment attribute
could be used for optional comments on each TroubleTicket.

5.4. CIM Documentation 93

GridAPPS-D Documentation, Release 1.0

Figure 39: Trouble Calls route through Metering Usage Points to EnergyConsumers

5.4.5 CIM Enhancements for RC4

Possible CIM enhancements:

1. Different on and off delay parameters for RegulatingControl (Figure 5)

2. Current ratings for PerLengthImpedance (Figure 2). At present, some users rely on associated WireInfo, ignor-
ing all attributes except currentRating.

3. Transducers for RegulatingControl (Figure 5)

4. Dielectric constant and soil resistivity (Figure 10)

5. Clock angles for TransformerTankEnd (i.e. move phaseAngleClock from PowerTransformerEnd to Trans-
formerEnd (Figure 6)

6. Add the Fault.stopDateTime attribute

7. Single-phase asynchronous and synchronous machines.

94 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

5.4.6 CIM Profile in CIMTool

CIMTool was used to develop and test the profile for RC1, because it:

1. Generates SQL for the MySQL database definition

2. Validates instance files against the profile

The CIMTool developer will not be able to support the tool in future, so we may use the new Schema Composer feature
in Enterprise Architect when it’s ready for CIM profiling.

In order to view the profile, import the archived Eclipse project OSPRREYS_CIMTOOL.zip into CIMTool. Please see
the CIM tutorial slides provided by Margaret Goodrich for user instructions.

Four instance files were validated against the profile in CIMTool. In order to generate them, we use a current version
of OpenDSS with the Export CDPSMcombined command on four IEEE test feeders that come with OpenDSS:

1. ~/src/opendss/Test/IEEE13_CDPSM.dss is the IEEE 13-bus test feeder with per-length phase impedance ma-
trices and a delta tertiary added to the substation transformer. PV and storage were also added.

2. ~/src/opendss/Test/IEEE13_Assets.dss is the IEEE 13-bus test feeder with catalog data for overhead lines,
cables and transformers. Capacitor controls have also been added.

3. ~/src/opendss/Distrib/IEEETestCases/8500-Node/Master.dss is the IEEE 8500-node test feeder with bal-
anced secondary loads.

4. ~/src/opendss/Distrib/IEEETestCases/8500-Node/Master-unbal.dss is the IEEE 8500-node test feeder with
unbalanced secondary loads.

Either the 3rd or 4th feeder will be used for the volt-var application. The 1st and 2nd feeders are used to validate more
parts of the CIM profile used in RC1. In all four cases, CIMTool reports only two kinds of validation error:

1. Isolated connectivity node: CIMTool expects two or more Terminals per ConnectivityNode, but dead ended
feeder segments will have only one on the last node. This is not really an error, at least for distribution systems.

2. Minimum cardinality: For TapChangerControl instances, the inherited RegulatingControl.RegulatingCondEq
association is not specified. This is not really an error, as the association is only needed for shunt capacitor
controls. Figure 40 shows that RegulatingCondEq was not selected for TapChangerControl in the profile, so this
may reflect a defect in the validation code. Efforts to circumvent it were not successful.

With these caveats, the profile and instances validate against each other, for feeder models that solve in OpenDSS.

5.4. CIM Documentation 95

GridAPPS-D Documentation, Release 1.0

Figure 40: Editing a Profile in CIMTool

5.4.7 Legacy Data Definition Language (DDL) for MySQL

As shown at the top of Figure 40, CIMTool builds RC1.sql to create tables in a relational database, but the syntax
doesn’t match that required for MySQL. The following manual edits were made:

1. Globally change CHAR VARYING(30) to varchar(50) with a blank space pre-pended before the varchar

2. Globally change “ to ‘

3. In foreign keys to enumerations, change the referenced attribute from mRID to name

4. In foreign keys to EquipmentContainer or ConnectivityNodeContainer, change the referenced table to Line

5. In foreign keys to ShuntCompensator, change the referenced table to LinearShuntCompensator

6. In foreign keys to TapChanger, change the referenced table to RatioTapChanger.

7. The CIM UML incorporates several polymorphic associations, which can’t be implemented directly in SQL.
Base parent class tables were added for:

a. AssetInfo, which can be referenced via the Parent attribute from ConcentricNeutralCableInfo, TapeShield-
CableInfo, OverheadWireInfo, WireSpacingInfo, TapChangerInfo and TransformerTankInfo

b. TransformerEnd, which can be referenced via the Parent attribute from PowerTransformerEnd and Trans-
formerTankEnd

c. PerLengthImpedance, which can be referenced via the Parent attribute from PerLengthSequen-
ceImpedance and PerLengthPhaseImpedance

d. Switch, which can be referenced via the SwtParent attribute from Breaker, Fuse, Sectionaliser, Recloser,
Disconnector, Jumper and LoadBreakSwitch.

e. ConductingEquipment, which can be referenced via the Parent attribute from ACLineSegment, Ener-
gySource, EnergyConsumer, LinearShuntCompensator, PowerTransformer, and all of the Switch types.

96 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

8. The catalog data mechanism in Figure 8 required two new tables, one for polymorphic associations and another
for many-to-many joins:

a. PowerSystemResource, which can be referenced via the PSR attribute from ACLineSegment, ACLine-
SegmentPhase, RatioTapChanger and TransformerTank.

b. AssetInfoJoin, which references AssetInfo and PowerSystemResource. This table actually supplants the
Asset class in Figure 8.

9. The ShortCircuitTest in Figure 9 has a one-to-many association to TransformerEndEnfo, and we need to imple-
ment the many side by adding:

a. GroundedEndJoin, which references TransformerEndInfo and ShortCircuitTest.

10. The ToTransformerEnd association in Figure 6 is one-to-many, so CIMTool did not export it to SQL. Rather than
create a join table, a ToTransformerEnd attribute was added to TransformerMeshImpedance. This supports only
one-to-one association, which is justified because the one-to-many case is very rare, and GridLAB-D cannot
model transformers having the one-to-many association. This restriction may be removed in future versions
having a semantic or graph database.

Except for the first two items, all of these adjustments arose from the absence of inheritance or polymorphism in
SQL. These adjustments will make the updates, queries and views more complicated. However, they allow ref-
erential integrity to be enforced, which is one of the most important reasons to use SQL and relational databases.
Other types of data store could be a more natural fit to the CIM UML, but they may not have the performance
of a relational database.

In GitHub:

1. RC1.sql is the manually adjusted SQL export from CIMTool

2. LoadRC1.sql will re-create the GridAPPS-D database in MySQL, incorporate RC1.sql, and finally document
the foreign keys. It should run without error.

5.5 Platform UML Diagrams

5.5.1 UML from the Functional Specification

This section presents a selection of GridAPPS-D domain (class) diagrams to supplement the OSPRREYS Functional
Specification document. The purpose is to enhance understanding of the functional specification, by providing graph-
ical walkthroughs of some important use cases. The reader should be familiar with definitions in the functional
specification, and with Universal Modeling Language (UML) diagrams.

GridAPPS-D is organized as a suite of internal function managers, twelve of them composing the Platform Manager
as shown in Figure 1. All GridAPPS-D functions and interactions are mediated by one (or more) of these function
managers. When running, the GridAPPS-D 413 Platform Manager will be composed of one (and only one) of each
internal manager numbered 401 – 412. These internal managers work together to accomplish various GridAPPS-D
functions.

5.5. Platform UML Diagrams 97

GridAPPS-D Documentation, Release 1.0

Figure 1: Composition of the GridAPPS-D Platform Manager

Within each class block, some top-level attributes are listed with (-) signs in the middle division, and some top-level
methods are listed with (+) signs in the lower division. For example, we already know that 401 Distribution Co-
Simulator will need component simulators (i.e. attributes) for buildings (open-source EnergyPlus), communications
(open-source ns-3), and the electric power distribution grid (open-source GridLAB-D running in a real-time mode).
It will also need at least one method that runs the suite of simulators in a mode emulating continuous real-time
operation. Taking another example, 407 Service Manager also contains an attribute for GridLAB-D to provide power
flow calculations, but run as a service to applications.

As the design evolves, classes in Figure 1 will acquire many more attributes and methods. The attributes themselves
may reference complicated classes and data structures. Therefore, the UML model will expand each class into layer
and sub-layer diagrams to more clearly show these evolving details. We can still use the top-level diagrams to make
sure that the major components are in place for the important use cases.

Figure 2 illustrates the case of a user executing an application, in the role of EF7 from the functional specification.
We initially focused on volt-var optimization (VVO), and then added a more complicated demand response (DR)
application that fits the same basic pattern. As a prerequisite, some entity has provided both applications to GridAPPS-
D for registration and hosting, in a process detailed later. For now, we assume the application(s) have been installed
and will focus first on running VVO.

98 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Figure 2: Executing an application

All user interaction with GridAPPS-D occurs through a command interface, numbered 202 when the user writes
commands to GridAPPS-D, and numbered 102 when the user gets data from GridAPPS-D. To run VVO, the user will
issue 203 Model Configuration Setup and 204 Simulation Configuration Setup to GridAPPS-D, which then delegates
the commands to various internal function managers (see Figure 1). The 203 Setup will probably extract the feeder
model of interest, set load and weather data, etc. The 204 Setup will probably tell 401 to run GridLAB-D for a certain
time period, but not to run ns-3 or EnergyPlus. The exact composition of 203 and 204 Setups will be determined
later in the design process. In a process described later, internal functions 405 (Simulation Control Manager) and 406
(Power System Model Manager) will transform 201, 203 and 204 into 305 and 306, which 401 can then read and run
from directly.

When it runs, 401 will generate streams of data that mimic real-time operation of the system, and these streams pass
to the other parts of GridAPPS-D as 301 Real-time Simulation Data. Some of the data streams may also output to
the user as 101 Real-time Simulation Data. The 310 VVO Application can act on this data to make decisions (e.g.
switch capacitor banks, change regulator taps, change solar inverter settings). In this process, 310 VVO could invoke
power flow calculations in GridLAB-D via 407 Service Manager, but this is different from the way 401 Co-Simulator
runs. The application may use 407 services to explore alternatives or run contingency analysis, which could change
the power system model, but the 401 real-time simulations always take priority and always use the “real” model.

When we considered adding the second and more complicated application, 310 DR, the structure of Figure 2 didn’t
change very much. The open-headed diamond symbols indicate that GridAPPS-D can host several applications, which
is UML aggregation. These applications may interact via the GridAPPS-D command interface, if the applications and
their command sets have been designed for it. For example, the DR application may use VVO to check and mitigate
voltage limits.

5.5. Platform UML Diagrams 99

GridAPPS-D Documentation, Release 1.0

A DR application is more likely than VVO to need EnergyPlus and ns-3 in the co-simulation. In response, we added
those attributes to 401, and will add supporting attributes to 201, 203 and 204 as the design evolves. It should also be
recognized that more sophisticated VVO applications might incorporate communications (ns-3) if available.

Figure 3 depicts the process of managing power system models, including the schema and repository within 201
Distribution System Model. Because it’s based on standards (e.g. IEC 61968) and open-source tools (e.g. MySQL),
the model can be created and maintained from outside GridAPPS-D, directly by EF 21, the Model Manager. This is
shown at the top of Figure 3. This process is out of GridAPPS-D scope but within project scope, and it can leverage
existing tools like Cimphony, Cimdesk, EA, etc.

For use by and within GridAPPS-D, all model configuration commands will pass from EF21 through the command
interface to function 406, the Power System Model Manager. This function reads the base power system model data
from 201, and configures it into a three-phase load flow model for solution in 106/306. The Distribution Co-Simulator
uses 306, but the user might want 106 for off-line use. Working with 404 Data Manager, the 406 Power System Model
Manager may also write additional data (i.e. not used in the load flow calculation) to 104/304. In this case, the 102
Model Output function will collect that data from both 104 and 106 for reporting to the user, EF7, via the command
interface. Note that the base data, in 201, is not modified through this process. Instead, the base data is treated as input
to GridAPPS-D.

Figure 3: Internal model management

Figure 4 shows the internal Platform Manager flow when running application tests. Compared to the case of normal

100 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

usage in Figure 2, this example shows additional control and output for testing. The test commands include 203 and
204, as in Figure 2, but they also include:

• 205 Test Scripts, for the sequence of steps to perform

• 206 Test Configuration Setup, including initial conditions, etc.

• 207 Expected Results, for comparison to the actual output

• 210 Application Metadata, for information to run and instrument the application

The 403 Test Manager orchestrates the steps to run the application and collect results. As part of 103 Test Results, it
will compare the real-time data (101/301) to the expected results in 207. If the testing user, EF8, requested logging,
then the 409 Log Manager will create 109/309 System Logs for collection by 403 Test Manager. Logging is optional,
and should have been requested as part of the 206 Test Config Setup or 204 Model Config Setup (this is not spelled
out in the functional specification).

Figure 4: Testing an application or the platform

Figure 5 shows some of the internal 413 Platform Manager detail when a user, EF7, runs an application in debugging
mode. Compared to Figure 2, there is much more internal output. The 212 Debug Configuration will include such
things as breakpoints, watch variables, and logging requests. When run in debug mode, the 408 Debug Manager will
collect the internal inputs and intermediate results from a variety of GridAPPS-D modules, including the simulator,
services in use, model data, and access violations. The 404 Data Manager mediates most of this data collection (and
with a change to the specification it could also mediate 101/301). The 408 Debug Manager combines this into 108

5.5. Platform UML Diagrams 101

GridAPPS-D Documentation, Release 1.0

Intermediate Results, with 109 System Logs, for output to the user via the command interface. Depending on the
implementation of GridAPPS-D, interactive debugging may also be supported, but is not shown in Figure 5.

Figure 5: Debugging an application

Figure 6 shows the process of registering or updating an application to use with GridAPPS-D. The developer, in the
role of EF13, must provide the application itself (211) along with the application data schema (208) and metadata
(210). The data schema includes input and output parameters. The metadata includes a user-friendly name, descrip-
tion, calling parameters, command syntax, API functions used, etc. Using this information, 410 Application Hosting
Manager will install and register the application, and its data, with 407 Service Manager and 404 Data Manager. After
completing these steps, 412 Version Manager will output the current version information via the command interface;
the current version includes information about which applications are installed along with the application versions.

In order to perform application management, EF13 also needs to provide user credentials to be checked against the
209 Access Control List. If these credentials are valid, the 411 SAC Manager will create 311 Access Permission

102 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

Verification for all of the internal Platform Manager components. In Figure 6, the 410 Application Hosting Manager
can pass 311 to 404, 407 and 412 as needed. Although not shown earlier, SAC is actually incorporated into all
GridAPPS-D processes this way.

Figure 6: Hosting an application

5.5. Platform UML Diagrams 103

GridAPPS-D Documentation, Release 1.0

Figure 7: Platform Objects

Figure 8: External Objects

5.5.2 UML for Release Cycle 4

Our objective is to demonstrate useful functionality, which is standards-compliant, by the end of March 2017. A
simple heuristic VVO application will be running in GridAPPS-D. In terms of the Functional Requirements, we will
be implementing:

• 102/202 Command Interface

• 301 Real-time Simulation Data

104 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

• 310 Hosted Application, but short-cutting the registration process

• 401 Distribution Co-Simulator (partial)

• 402 Process Manager (partial)

• 404 Data Manager (partial)

• 405 Simulation Manager (partial)

• 406 Power System Model Manager (partial)

• 413 Platform Manager (encapsulating 401 and 403-406)

This represents five out of twelve Internal Functions from the Functional Requirements, in partial form. The deadline
leaves four months for detailed design and implementation, plus two months for documentation and testing. Therefore,
we have chosen a minimal set of functions that can show end-to-end use of GridAPPS-D at the first milestone.

In developing the work breakdown structure (WBS), we noted that real-time simulation data is published with no time
lags or errors in Release 1. However, data flow in a real DMS is affected by sensor and communication system perfor-
mance, and also by the action of other subsystems. In Release 2, this might be addressed through some combination
of:

• Communication and sensor models in the Distribution Co-Simulator

• Adding MDM and SCADA service attributes to the 407 Service Manager

• Filters on 301 Real-time Simulation Data

These decisions, and many others affecting Release 2 and Release 3, can be deferred until we gain experience devel-
oping Release 1.

Figure 1 shows the software components planned for Release 1. Most of these correspond to internal functions from the
Functional Requirements, with some relatively minor re-factoring. The Power System Model Manager functionality
has been split. The data store management and the creation of a complete GridLAB-D model appear at the bottom.
Once the simulator is running, incremental changes are posted to the messaging bus.

Most of the “pink” components in Figure 1 are assigned to one task, except:

• The 310 VVO is a sub-task of the Command Interface, due to the close coupling of those efforts. The team on
this task needs both power system and software skills.

• A separate task has been added for some project-level items.

5.5. Platform UML Diagrams 105

GridAPPS-D Documentation, Release 1.0

Figure 1: Component Diagram for GridAPPS-D Release 1

5.5.3 Initial Work Breakdown for Release Cycle 1

The Release 1 work breaks down into seven tasks, listed below. Three critical items must be completed first; these
are highlighted in red. There are other inter-task dependencies that have not yet been called out. We plan to sequence
the work over eight two-week “sprints” within the four months allocated for detailed design and development, using
an agile process (Kanban).

1) Project-level Elements

a. Identify a power system model (note: IEEE-13 is already in CIM/CDPSM)

b. Design data store schema

c. Manually ingest power system models

2) Command Interface

a. Design APIs

i. For all configurations in Task 4

ii. For power system control actions (e.g. open/close switch)

b. Select one language binding (e.g. Python, Java, C++, MATLAB) and implement

106 Chapter 5. GridAPPS-D Development Resources

GridAPPS-D Documentation, Release 1.0

c. Develop a heuristic volt-var application (VVO) in the bound language

d. Integrate VVO into GridAPPS-D

3) Messaging and Data Manager

a. Select a messaging framework (eg. ZeroMQ)

b. Create communication APIs

c. Receives real-time data from simulator

d. Receives power system control actions

e. Handle communication between GridAPPS-D managers

f. Log messages to file

4) Configuration Manager (both Power System Config & Simulation Config)

a. Receive configurations from command interface over message bus

b. Translate configurations to native GridLAB-D

c. Translate and publish incremental update messages

d. Send configurations to Process Manager for simulation start

5) Process Manager

a. Receives configurations from the Configuration Manager

b. Send configuration to the Distribution Co-Simulator

c. Start Co-Simulation Process

d. Create simulation data channels and inform application

e. Stop simulation process

6) Distribution Co-Simulator (wraps GridLAB-D)

a. Accepts configurations from Process Manager

b. Start simulation

c. Produce and publish data in real time

d. Accept changes in real time (e.g. capacitor switching) via message bus

7) Power System Model Manager

a. Access the power system model in data store

b. Create native GridLAB-D file for initial loading into the simulator

5.6 CIM Validation

This section presents an overview of CIM Validation techniques that will be expanded upon in the future. The purpose
of CIM validation is to assess the level of compliance GRIDAPPS-D is using in its use of CIM version 100.

5.6. CIM Validation 107

GridAPPS-D Documentation, Release 1.0

5.6.1 Introduction

In electrical power distribution and transmission the Common Information Model (CIM) is a technology agnostic
standard developed by the International Electrotechnical Commission (IEC). CIM provides the blueprints for appli-
cation software like GridAPPS-D to represent data structures, message payloads, and information exchanges between
applications.

To represent the model, CIM is written using the Unified Modeling Language (UML) using Sparx Enterprise Architect.
The model is stored in a project file (*.eap extension file). GridAPPS-D extends the CIM to meet its application specific
needs. UML (Object Management Group UML 2.5 Specification) profiles are secondary models, derived from the
primary information model. Profiles represent a portion of the model to support GridAPPS-D application-specific
structures and exchanges. A profile operates within the scope of the information model and is formed by extracting
selected elements of the information model. These extracted elements are filtered or constrained by providing value
ranges, reducing cardinality, and filtering structures.

UML profiles use stereotype notation <<>> to annotate information model elements such as classes, associations, and
attributes in a target domain or technology. Stereotypes are either used to impose domain-specific criteria (for exam-
ple, <<CIM:Datatype>>) or technical criteria (for example, <<table>>, <<primarykey>>) on UML elements. UML
profiles are generated in a variety of ways including use of tools such as Enterprise Architect (EA) Schema Composer,
CIMContextor, or CIMTool to define structural requirements. The W3C Shape Constraint Language (SHACL) will be
used as extensions to further specify value constraints.

Currently GridAPPS-D is using UML diagrams as a human-readable intuitive profile description of application-
specific uses of the extended CIM. Future profiles will be produced by CIMTool and SHACL to provide a more
comprehensive blueprint for application development that is machine readable to compliment the diagrams.

5.6.2 Extending CIM

CIM is built on universally understood power grid concepts which means that the UML should be generally applicable,
When the needs go beyond the general purpose solution it is possible to extend CIM for application specific purposes.
When extending CIM to be compliant, the extentions comply with the rules and organization of the existing model.
Otherwise an uncompliant application risks losing the advantage of using the standard, particularly for information
exchanges.

Techniques for extending the CIM will not be discussed here, however the IEC TC 57 61970 part 301 document and
the CIM Model Manager Guide (being released Spring 2020 by the TC57 CIM Model Managers) provides excellent
guidance on best practices when extending the CIM.

5.6.3 Validation Techniques

5.6.4 Well-Formed UML Compliance

In the IEC TC 57 13, 14, and 16 Working Groups the CIM Model Managers are relied upon for any updates to
the UML. Before a release occurs the JCleanCim tool (http://tanjakostic.org/jcleancim/index.html) is used to validate
UML package, class, and associations against agreed upon rules for well-formed UML. The JCleanCim tool generates
a log report citing any non-compliance items along with other products. It is basically like a software debug tool for
CIM UML. For extensions the JCimClean tool can be used to review GridAPPS-D extensions and flag any problematic
areas. In addition the JCimClean tool original log report for CIM100 can be compared against the GridAPPS-D
CIMv100.

108 Chapter 5. GridAPPS-D Development Resources

http://tanjakostic.org/jcleancim/index.html

GridAPPS-D Documentation, Release 1.0

5.6.5 Well-Formed and Valid Profile

CIMTool can not only create Resource Description Framework Schema (RDFS) profiles from the CIM100 UML, it
can also validate the generated profiles or created RDF datasets against CIM100 schema. GridAPPS-D has plans
to extend the CIMTool Validation using SHACL to specify and constrain value ranges or check regular expression
patterns

5.6.6 Final Thoughts

This section is expected to evolve in 2020 with the advancement of CIM Model Manager tools that were previously
only accessible to the model managers or based on advancements of validation techniques in the profile development
communities.

5.6. CIM Validation 109

GridAPPS-D Documentation, Release 1.0

110 Chapter 5. GridAPPS-D Development Resources

CHAPTER 6

Data Model

6.1 IEEE 8500-Node Test Feeder

An IEEE Working Group specified a set of distribution test circuits [CIT1] and we have chosen the largest one of these
as a sample circuit for GridAPPS-D [CIT2]. The 8500-Node test feeder operates at 12.47 kV and has a peak load
of about 11 MW, including approximately 1100 single-phase, center-tapped transformers with triplex service drops.
Loads are balanced between the two center-tapped windings.

The circuit includes 4 shunt capacitor banks and 4 voltage regulator banks, making it a reasonable test for solving
voltage problems and for applying volt-var optimization (VVO). The circuit is also relatively lossy at peak load.

The model in GridAPPS-D came from the IEEE 8500-Node input files distributed with OpenDSS, exported to CIM
from OpenDSS, and then imported to the GridAPPS-D data manager. In this automated process, four changes were
implemented:

1. Use constant-current load models, rather than constant-power load models. This is necessary for the solu-
tion to converge at peak load. Voltages at peak load are low, and a constant-power load will draw more current
under those conditions. Holding the current magnitude constant allows GridLAB-D to achieve convergence un-
der a variety of operating conditions. This is an appropriate compromise in accuracy for real-time applications,
which need to be robust through wide variations in voltage and load. In contrast, planning applications usually
need more accurate load models, even at the possible expense of re-running some non-converged simulations.

2. Disable automatic regulator and capacitor controls. The volt-var application, described below, will supersede
these settings. If a developer or user is testing the GridLAB-D model outside of GridAPPS-D, these control
settings should be re-enabled in order to solve the circuit at peak load. That requires manual un-commenting
edits to the GridLAB-D input file.

3. Substitute a variable called VSOURCE for the SWING bus nominal voltage. This needs to be set at 1.05
per-unit of nominal on the 115-kV system (i.e. 69715.065) in order to solve at peak load. Other conditions may
require different source voltage values.

4. Use a schedule for the loads so they can vary with time during GridAPPS-D simulation. The file should be
named zipload_schedule.player.

111

GridAPPS-D Documentation, Release 1.0

112 Chapter 6. Data Model

CHAPTER 7

Integrated Applications

7.1 Volt-var Optimization (VVO)

The sample VVO application is a Python implementation of a heuristic method that PNNL has investigated before
[CIT3], [CIT4], [CIT5]. There are more advanced VVO methods that will be implemented in future work.

7.2 Visualization

We have created a web-based visualization of the sample VVO application. The visualization displays the topology
of the IEEE 8500-Node system as an interactive graph. Capacitors and regulators are highlighted in the graph and
displayed alongside tables with current values for capacitor status (OPEN or CLOSED), regulator voltage, and feeder
power.

7.3 State Estimator Service

Given a perfect and complete set of voltage magnitude and angle measurements, along with a detailed and accurate
power system model, one could calculate the real power, or any other electrical variable of interest, anywhere in the
system. In practice, measurements have errors, time delays, and may even be missing. State estimation refers to the
process of minimizing the errors and filling in gaps [1]. One state estimation method is called “weighted least squares”,
and it’s analogous to drawing the best-fit line through a set of scattered points. Other methods may perform better [2].
Also, on distribution systems, it may be better to estimate branch currents instead of node voltages, but the principle is
the same. In GridAPPS-D, the visualizations and applications ought to use the best available state estimator outputs,
instead of raw SCADA values, for both accuracy and consistency. Therefore, the state estimator is not an application
but a service in GridAPPS-D, sitting between emulated SCADA and the GOSS bus.

113

GridAPPS-D Documentation, Release 1.0

Figure 1: The state estimator processes noisy and incomplete measurements, then posting estimated voltage (V),
current (I), real power (P), reactive power (Q) and switch status (S) values onto the GridAPPS-D message / data bus.

In Figure 1, the power system model (upper left) will include a limited number of sensors, corresponding to actual
voltage and current transformers, line post sensors, wireless sensors, etc. In some scenarios, smart meters can also be
sensors. Each such sensor will have different performance characteristics (e.g. precision, accuracy, sampling rate).
Distribution systems typically do not have enough sensors to make the system observable, so there will be measurement
gaps in the topology. The state estimator might fill these gaps with interpolation and graph-tracing methods on the
power system model.

The supervisory control and data acquisition (SCADA) system in Figure 1 introduces more errors and failure points.
Eventually, GridAPPS-D may simulate these impacts by federating ns-3 as a co-simulator. Until then, a placeholder
module could be used to insert variable errors, time delays and dropouts in each measurement, whether due to sensor
characteristics or the communication system. The output represents data as it would come into an operations center,
and feeds the state estimator. Internally, the data flows between simulator, SCADA and state estimator might be
implemented with FNCS, but this is an implementation detail. The state estimator will provide two outputs to the
GOSS bus used by all GridAPPS-D applications:

1. At a time step configured by the platform, publish the best-estimate VIPQS values wherever sensors actually
exist in the model, with quality attributes that still have to be established. Sensor locations delineate circuit
segments, and note that all VIPQS values will be estimated at the boundaries, even if the sensor measures only
V or I, for example.

2. Upon request by another application or service, publish the estimated VIPQS values for all nodes and com-
ponents in the model, even at locations where no sensors exist. A variant is to publish the estimates only for
selected nodes and components.

As indicated in Figure 1, other applications need to obtain estimated VIPQS values from the GOSS bus. Switch
open/close states are a special case; they might be considered known values, but in practice the switch state is a
measurement, which could lead to topology errors in the model. For GridAPPS-D, switch state estimates need to be
a point of emphasis. Given that most distribution systems lack redundant measurements, It would be possible for an
application to query these VIPQS values directly from the simulator or SCADA, bypassing the state estimator, but this
is “cheating” in most situations. However, in the application development process, idealized VIPQS values could be
obtained through a combination of two methods:

1. Add more sensors to the power system model

114 Chapter 7. Integrated Applications

GridAPPS-D Documentation, Release 1.0

2. Set the sensor and channel errors to zero

Because the sensor outputs in GridAPPS-D come from a power flow solution that enforces Kirchhoff’s Laws, the state
estimator will produce ideally accurate values whenever the sensor and channel errors have been specified to be zero.
The state estimator may still exhibit interpolation errors between sensor locations, but that is readily mitigated for
testing purposes by adding more sensors.

With reference to RC1, the visualization and VVO applications should now subscribe to VIPQS values from the state
estimator, not from the distribution simulator. They may also use or display quality metrics on the estimated values.

7.3.1 Design Objectives

State estimation is widely used in transmission system operations but is less common in distribution system operations
due to a relatively limited value in traditional distribution systems, additional computational complexity, and a lack of
sensors. Advanced distribution management platforms like GridAPPS-D provide access to model and sensor data that
can be leveraged to overcome barriers to adoption and open the door to distribution system state estimators that are
fast and accurate enough to be useful in utility operations.

A distribution system state estimator computes the most likely state given a set of present and/or past measurements.
The full state of a distribution system consists of either the full set of complex bus voltages or the full set of complex
branch currents; given the system model (admittance matrix), the remaining system parameters can be computed given
the full system state.

7.3.2 Use Cases

• Assist power factor optimization: Utility objective is unity power-factor at the substation.

• Assist voltage optimization (planning): Utility objective is 1 p.u. voltage at last house primary.

• Real-time state estimation for advanced applications: applications can access the state estimate at a sufficient
resolution to capture e.g. insolation variation caused by clouds.

7.3.3 Algorithms

State estimation uses system model information to produce an estimate of the state vector x given a measurement
vector z. The measurement vector is related to the state vector and an error vector by the measurement function, which
may be non-linear.

𝑧 = ℎ(𝑥) + 𝑒

Multiple formulations of the distribution system state estimation problem are possible:

1. Node Voltage State Estimation (NVSE): The state vector consists of node voltage magnitudes and angles for each
node in the system (one reference angle can be eliminated from the state vector). This formulation of the state
estimation problem is general to any topology and it is the standard for transmission system state estimation.

2. Branch Current State Estimation (BCSE): Radial topology and assumptions about shunt losses create a lin-
ear formulation of the state estimation problem. The state vector contains branch currents and, for a fully-
constrained problem, requires one state per load, which can be less than the number of branches in the system.

Different algorithms provide different advantages for distribution system state estimation. A subset of the state esti-
mation algorithms below will be used to achieve these goals.

1. Weighted Least Squares Estimation (WLSE): a concurrent set of measurements are used to find a state vector that
minimizes the weighted least squares objective function. The algorithm is memoryless with respect to previous
solutions and measurements should be synchronized.

7.3. State Estimator Service 115

GridAPPS-D Documentation, Release 1.0

2. Kalman Filter Estimation (KFE) and Extended Kalman Filter Estimation (EKFE): The Kalman filter provides
a mechanism to consider past state estimates alongside present measurements. This provides additional noise
rejection and allows asynchronous measurements can be considered individually. KFE is appropriate for linear
BCSE and EKFE is compatible with nonlinear NVSE.

3. Unscented Kalman Filter Estimation (UKFE): The unscented transform estimates the expected value and vari-
ance of the system state by observing the system outputs for inputs spanning the full dimensionality of the
measurement space. Again, the Kalman filter provides a mechanism to consider past estimates.

7.3.4 TRL

The state estimator application will provide the capability to estimate the full system state using asynchronous mea-
surement data. In addition a model order reduction technique will be implemented to greatly speed up the state
estimation computation and to reduce the dependence on forecast-based pseudo-measurements. A paper (Reduced-
Order State Estimation for Power Distribution Systems with Sparse Sensing) is targeted for IEEE Transactions on
Power Systems.

7.3.5 Architecture

The state estimation service is being developed in c++. A modern c++ implementation allows the application to adapt
to an evolving interface. The program architecture is shown below.

Topology Processor: initializes the measurement function and its Jacobian and determines the size of the measurement
vector, the measurement covariance matrix, and the state vector.

Meter Interface: updates the measurement vector and the measurement covariance matrix as new measurement data
comes available.

State Estimator: performs the state estimation operation according to the specified algorithm.

Output Interface: formats the state vector and any implicit states as an output stream.

116 Chapter 7. Integrated Applications

GridAPPS-D Documentation, Release 1.0

7.3.6 Inputs

Upon initialization, the topology processor will receive the Y-bus from the GridLAB-D service and will query contex-
tual information and sensor locations from the CIM database.

Periodic measurement data, including any forecasts to be used a pseudo-measurements will be required as inputs.

A “terminate” command from the platform will end the state estimation process.

7.3.7 Outputs

The output will include the full system state (node voltages and/or branch currents TBD).

7.3.8 Testing and Validation

Evaluation metrics

• State Error: compare state estimation output to “true” system state.

• Accuracy over baseline: compare state error of state estimator to state error of a QSTS load-flow model.

• Execution Time

• Bad Sensor Detection (binary)

Scenarios

• Full sensor deployment: verify that the true system state can be reproduced.

• Sparse sensor deployment: verify that the state estimator performs better than a QSTS load-flow model.

• Breaker trip: verify that switch state can be detected even when it is reported incorrectly.

• Bad sensor detection: verify that a sensor that is producing bad data can be identified.

• Dependent application support: verify that the state estimator can support e.g. the VVO application.

• Fault: for a radial system, determine the nearest common bus from multiple emulated customer calls.

7.3.9 Operating/Running

The state estimator will execute the topology processor at initialization and will enter a stat estimation loop. The state
estimation loop will exit and the process will end upon receiving a ‘terminate’ command from the platform.

At initialization, a configuration file will be read for:

• State estimation mode (state vector and algorithm) selection

• Normalized residual threshold for bad measurement / sensor detection

7.3.10 References

[1] T. E. McDermott, “Grid Monitoring and State Estimation,” in Smart Grid Handbook, ed: John Wiley & Sons, Ltd,
2016.

[2] A. Abur and A. Gomez Exposito, Power system state estimation : theory and implementation. New York, NY:
Marcel Dekker, 2004.

7.3. State Estimator Service 117

GridAPPS-D Documentation, Release 1.0

[3] M. E. Baran and A. W. Kelley, “A branch-current-based state estimation method for distribution systems,” in IEEE
Transactions on Power Systems, vol. 10, no. 1, pp. 483-491, Feb 1995.

[4] Z. Jia, J. Chen and Y. Liao, “State estimation in distribution system considering effects of AMI data,” 2013 Pro-
ceedings of IEEE Southeastcon, Jacksonville, FL, 2013, pp. 1-6.

[5] S. C. Huang, C. N. Lu and Y. L. Lo, “Evaluation of AMI and SCADA Data Synergy for Distribution Feeder
Modeling,” in IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1639-1647, July 2015.

[6] M. Kettner; M. Paolone, “Sequential Discrete Kalman Filter for Real-Time State Estimation in Power Distribution
Systems: Theory and Implementation,” in IEEE Transactions on Instrumentation and Measurement, vol.PP, no.99, pp.
1-13, Jun. 2017.

[7] G. Valverde and V. Terzija, “Unscented kalman filter for power system dynamic state estimation,” in IET Genera-
tion, Transmission & Distribution, vol. 5, no. 1, pp. 29-37, Jan.

7.4 Model Validation Application

The state estimator basically attempts to fit measured data to a power flow model, usually assuming that the model is
correct. However, a model attribute (e.g. line impedance) could also be estimated by minimizing its error residual in
the state estimator’s power flow solution. This process works best when applied to just one or a few suspect attributes,
and/or when an archive is available to provide enough redundant measurements. The Model Validation Application
will use these state estimator features off-line to help identify and correct the following types of model errors:

1. Unknown or incorrect service transformer sizes

2. Unknown or incorrect secondary circuit lengths

3. Incorrect phase identification of single-phase components

4. Phase wiring errors in line segments and switches

5. Transformer connection errors, especially reversed primary and secondary

6. Primary conductor sizes that don’t decrease monotonically with distance from the source

7. Missing regulator and capacitor control settings (i.e. supply defaults from heuristic rules)

8. More than one of these on the same pole: recloser, line regulator, capacitor

9. Substation transformer impedance and turns ratio

These types of errors often appear upon the initial model import from a geographic information system (GIS), or in
periodic model updates from GIS. Other error types may be added later. Many utilities do not have their secondary
circuits modeled at all, but this has an important impact on AMI data. The service transformers and secondary circuits
insert significant impedance between AMI meters and the primary circuit, where most of the other sensors are installed.
Therefore, the first two items will require AMI data, and also enable its more effective use.

As shown in Figure 1, the Model Validator integrates with GridAPPS-D as a hosted application on the GOSS bus.
Internally, it will use some of the same algorithms as the State Estimator and may share some code or binary files, but
this is an implementation detail. It will need to access an archive of state-estimated VIPQS data, which may include
AMI data. It will also use or incorporate an off-line power flow model, not the same one running in the GridAPPS-D
distribution simulator. This may be EPRI’s OpenDSS simulator [1]; compared to GridLAB-D, it’s more tolerant of
model errors and provides more diagnostic information about model errors.

118 Chapter 7. Integrated Applications

GridAPPS-D Documentation, Release 1.0

Figure 1: The Model Validator works with an archive from the state estimator, and an off-line power flow model.

7.4.1 Design Objectives

The model validator will detect and attempt to correct unreasonable component interconnections and network param-
eters. The model validation application will be implemented in Python.

7.4.2 Use Cases

• Valid transformer size and orientation (Utility): orientation is not captured explicitly in their GIS system.

• Discover secondary line impedance parameters (Utility) conductor type and line length are currently based on
generic assumptions.

• Sanity check or estimate transformer size and impedance.

• Verify that the nominal voltage of nodes matches the base voltage of the segment: generally the winding voltage
of the upstream transformer or swing bus voltage.

• Sanity check conductor sizes and line current ratings.

• Validate and fill in regulator and capacitor control settings.

• Check phase continuity (GridLAB-D may not model phase discontinuities)

7.4.3 Inputs

The model validator will have access to the CIM database and archived data from the state estimator.

7.4.4 Outputs

The model validator will one or both of the following outputs:

7.4. Model Validation Application 119

GridAPPS-D Documentation, Release 1.0

• Model status: log file or GUI pipe for identified issues.

• Model correction: CIM updates to correct identified issues.

7.4.5 Testing and Validation

Evaluation metrics

• Ability to detect known issues.

Scenarios

• Utility merger: models with different format may be interpreted differently, creating issues a CIM model.

• Data entry issue: model update does not match upgrade performed in the field

7.4.6 Operating/Running

The model validator script will execute once when called by the platform.

At initialization, a configuration file will be read for:

• Mode (status, quiet, verbose; see outputs section)

• Selectable validation items (use cases)

7.4.7 References

[1] R. C. Dugan and T. E. McDermott, “An open source platform for collaborating on smart grid research,” in Power
and Energy Society General Meeting, 2011 IEEE, 2011, pp. 1-7.

7.5 Transactive Systems Application

Transactive energy is a method of controlling loads and resources on the distribution system, combining both market
and electrical principles [1]. One reason for including this application in DOE-funded GridAPPS-D is that PNNL
has made several technical contributions and led several demonstration projects in transactive systems, also funded by
DOE [2].

Application structure

This transactive systems application is to be implemented as a modularized 2-layer 3-level structure, as seen from
Figure 3. The layer decomposition helps the control of various groups, with limited information flow between different
layers. With the predefined functions in each agent type (Agent A, B, and C) in each level, the existing transactive
system related work can be conveniently integrated into the application, and the new control features can be added
into specific control function in each type of the agent easily.

120 Chapter 7. Integrated Applications

GridAPPS-D Documentation, Release 1.0

Figure 3: The structure of the modularized 2-layer 3-level transactive system application

The modularized agents opens the door for integrating different control mechanisms into the application. Users need
to consider which level their control algorithm fits into, and fill in the control function of the Agent class in that level,
without worrying about communications between the agents. In each level, the same type of the agent may have
various control functions, which help combining benefits of different control schemes together.

Agent A, B and C will be implemented as VOLTTRON applications. VOLTTRON is an application platform for
distributed sensing and control applications [3]. With the capability of hardware-in-the-loop (HIL) testing through
VOLTTRON, the transactive systems application will be tested using the actual devices. A GOSS-VOLTTRON Bridge
is to be implemented, for the communication between GridAPPS-D and the VOLTTRON agents in the transactive
systems application.

Application test cases

The hierarchical control framework introduced in [4] for integrated coordination between distributed energy resources
and demand response will be implemented into the application. In addition, [4] has not considered the power losses or
power constrains, which will be taken into consideration in this test case. The two-layer control mechanism, including
the coordination layer and device layer, fits the proposed structure of the application well. The control in each level
will be implemented into corresponding function in each type of the agent. The IEEE 123-node test feeder built in
GridLAB-D will be used for testing the application.

CIM extension for the Application

The latest versions of GridAPPS-D has used a reduced-order CIM to support feeder modeling. With transactive system
application included into GridAPPS-D platform, more objects, such as house air conditioner and water heater, need to
be defined in CIM. Before the definition in CIM, a simplified version of the house object and water heater object are
to be implemented in GridLAB-D.

7.5.1 References

[1] Gridwise Architecture Council. (2017). Transactive Energy. Available: http://www.gridwiseac.org/about/
transactive_energy.aspx

7.5. Transactive Systems Application 121

http://www.gridwiseac.org/about/transactive_energy.aspx
http://www.gridwiseac.org/about/transactive_energy.aspx

GridAPPS-D Documentation, Release 1.0

[2] Pacific Northwest National Laboratory. (2017). Transactive Energy Simulation Platform (TESP). Available: http:
//tesp.readthedocs.io/en/latest/

[3] S. Katipamula, J. Haack, G. Hernandez, B. Akyol, and J. Hagerman, “VOLTTRON: An Open-Source Software
Platform of the Future,” IEEE Electrification Magazine, vol. 4, pp. 15-22, 2016.

[4] Di Wu, Jianming Lian, Yannan Sun, Tao Yang, Jacob Hansen, “Hierarchical control framework for integrated
coordination between distributed energy resources and demand response,” Electric Power Systems Research, pp. 45-
54, May 2017.

7.6 Distribution Optimal Power Flow for Real-Time Setpoint Dispatch

7.6.1 Objectives

This application is designed to address the problem of optimizing the operation of aggregations of heterogeneous en-
ergy resources connected to a distribution system. We will focus on real=time optimization method and the power
setting points of the distributed energy resources (DERs) will be updated on a second or subsecond timescale to max-
imize the operational objectives while coping with the variability of ambient conditions and noncontrollable energy
assets [1]. In order to avoid massive measurements and overcome the limitation caused by model inaccuracy, this
application will be implemented in a distributed manner, and only local measurements and a feedback signal from the
substation aggregator are needed to determine the optimal setpoints for each controlled DER unit.

Figure 1 The conceptual framework of distribution OPF for real=time setpoint dispatch.

Figure 1 shows the conceptual framework of this application, and this application is targeting at TRL 3.

7.6.2 Design

Figure 2 describes the overall work flow of the application. Distribution OPF algorithm requires real=time mea-
surements, distribution system model and power flow results, which will be obtained from GridAPPS=D platform
through GOSS/FNCS message bus. The optimization problem formulation can be constructed using user=defined
cost functions for different controllable devices. Finally the optimal setpoints for controllable devices will be solved
based on the feedback information from system measurements. These setpoints will be sent back to GridLab=D grid
model to update DER operations. Such a closed=loop control forms the control iteration for the studied time point,
and new setpoints for the following time points will be determined in the same manner using the updated model and
measurements.

122 Chapter 7. Integrated Applications

http://tesp.readthedocs.io/en/latest/
http://tesp.readthedocs.io/en/latest/

GridAPPS-D Documentation, Release 1.0

Figure 2 The workflow of real=time setpoint dispatch application and its interaction with GridApps=D.

7.6.3 Data requirements

The DER application requires p and q values from the inverters attached to PVs, loads, and capacitors. The DER
application also requires setting the p and q values of inverters attached to PVs.

7.6.4 Testing and Validation

Evaluation metrics of this application:

• Real/reactive power at the substation

• System loss

• Voltages across the entire distribution grid: voltage magnitude, voltage fluctuation, voltage unbalance.

• Legacy control device operations: total control actions of all capacitors and regulators

Scenarios:

• Optimal Dispatch for Distributed PV Systems

• Optimal Dispatch for Distributed PV + Energy Storage

• Etc. (will be added when implementing the application)

7.6.5 Operating/Running

This application will be developed using Python.

7.6.6 References

[1] E. Dall’Anese, A. Bernstein, and A. Simonetto, “Feedback=based Projected=gradient Method for Real=time Op-
timization of Aggregations of Energy Resources,” IEEE Global Conference on Signal and Information Processing
(GlobalSIP), Montreal, Canada, Nov. 2017.

7.6. Distribution Optimal Power Flow for Real-Time Setpoint Dispatch 123

GridAPPS-D Documentation, Release 1.0

7.7 Short-Term Grid Forecasting

7.7.1 Objectives

Today’s distribution systems have been experiencing a significant transformation due to an increasing amount of smart
electric loads and distributed energy resources, such as electric vehicles, smart home appliances, rooftop photovoltaic
systems, and energy storage. As more flexible resources integrated into distribution systems, coordination among
various flexible resources plays an important role in distribution system operations to optimally manage distribution
assets and flexible resources. On the other hand, with the increasing penetration of variable energy resources, it
is crucial for system operators to not only monitor and estimate the current grid conditions but also forecast the
future system status, which allows for proactive dispatch of controllable resources and better preparation for ever-
changing grid conditions. This application develops predictive locational marginal prices (DLMPs) to proactively
manage the distribution assets and flexible resources based on forecasted grid conditions. This application enables the
distribution system operators to optimally incentivize individual resources to achieve system-level control objectives,
such as minimizing total generation cost and optimizing the voltage profile; and it paves the way to a fully functional
distribution market with granular prices that reflect the time- and location-specific values of individual participants.

7.7.2 Design

This application develops a high-resolution, short-term load forecasting method to accurately predict the power con-
sumption of individual customers in distribution systems. Using historical load measurements as inputs, it trains a
support vector regression model to forecast the future load. Based on the forecasted load in the short-term future, this
application develops a three-phase AC optimal power flow problem to determine the predictive DLMPs in distribu-
tion systems. By accurately modeling the losses and the imbalances of distribution networks, it provides time- and
location-specific pricing of individual resources.

7.7.3 Operating/Running

The application was built using Python 3.6. It will be run from the platform GUI.

7.7.4 References

[1] H. Jiang, Y. Zhang, E. Muljadi, J. J. Zhang, and D. W. Gao, “A Short-Term and High-Resolution Distribution
System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization,” in IEEE

124 Chapter 7. Integrated Applications

GridAPPS-D Documentation, Release 1.0

Transactions on Smart Grid, vol. 9, no. 4, pp. 3341-3350, July 2018. [2] R. Yang and Y. Zhang, “Three-Phase
AC Optimal Power Flow Based Distribution Locational Marginal Price,” IEEE Innovative Smart Grid Technologies,
Arlington, VA, Apr. 2017.

7.8 Solar Forecasting Application

7.8.1 Objectives

When observations of solar radiation are limited, persistence and smart persistence solar forecasting techniques are
frequently the easiest and most effective methods to use. Often though, these techniques suffer from having no infor-
mation about current cloud properties, which could improve the forecast. At NREL, a Physics-based Smart Persistence
model (PSPI) [1] was created for intra-hour solar forecasting using only GHI observations and a cloud retrieval tech-
nique. This model breaks down common solar radiation components such as GHI and solar zenith angle (SZA) using a
two-stream approximation [2] and methods used in [3] to forecast future GHI, cloud fraction, and cloud albedo. With
this information, this technique can then be used to forecast solar power (still in development). Figure 1 below shows
the conceptual framework for PSPI.

Figure 1 Conceptual framework
for PSPI. PSPI breaks up the GHI and solar zenith angle (SZA) into cloud fraction and cloud albedo compo-
nents.

7.8.2 Design

PSPI is designed to operate only using GHI observations. Other atmospheric parameters, such as pressure and temper-
ature, can be ingested into the application as well if those observations exist. Currently, site-specific annual averages of
these parameters are used. Other parameters, such as altitude of the site of interest, need to be adjusted prior to running

7.8. Solar Forecasting Application 125

GridAPPS-D Documentation, Release 1.0

the application. Whatever atmospheric variables are available via the GridAPPS-D platform, they can be ingested into
the PSPI based on the user’s needs (still in development). Once all desired parameters are chosen and the application
is run, intra-hour GHI forecasts can be made (5 to 60-minute forecasts) as frequently as observations arrive (usually
minutely).

7.8.3 Testing and Validation

PSPI was tested and validated using 10 years of GHI data at the Solar Radiation Research Laboratory (SRRL) at
NREL, in Golden, Colorado. More information about this process can be found in [1].

7.8.4 Operating/Running

The application was built using Python 3.6. It will be run from the platform GUI.

7.8.5 References

[1] Kumler, A., Xie, Y., & Zhang, Y. (2019). A Physics-based Smart Persistence model for Intra-hour forecasting of
solar radiation (PSPI) using GHI measurements and a cloud retrieval technique. Solar Energy, 177, 494-500.

[2] Sagan, C., & Pollack, J. B. (1967). Anisotropic nonconservative scattering and the clouds of Venus. Journal of
Geophysical Research, 72(2), 469-477.

[3] Xie, Y., & Liu, Y. (2013). A new approach for simultaneously retrieving cloud albedo and cloud fraction from
surface-based shortwave radiation measurements. Environmental Research Letters, 8(4), 044023.

126 Chapter 7. Integrated Applications

CHAPTER 8

API Documentation

8.1 GridAPPS-D

8.2 GOSS

The GridOPTICS Software System (GOSS) manages the platform data and message bus; its overall design is described
in [CIT6].

8.3 FNCS

The Framework for Network Co-simulation (FNCS) manages the time clock and message traffic between platform
simulators; its overall design is described in [CIT7]. For API documentation see https://github.com/FNCS/fncs/wiki .

8.4 VVO

8.5 GridLAB-D

GridLAB-D is the distribution grid simulator within the platform; its overall design is described in [CIT8].

8.6 gov.pnnl.gridlabd.cim

This Java package converts CIM RDF to GridLAB-D format.

127

https://github.com/FNCS/fncs/wiki

GridAPPS-D Documentation, Release 1.0

8.6.1 CDPSM_to_GLM

public class CDPSM_to_GLM
This class converts CIM (IEC 61968) RDF to GridLAB-D format

The general pattern is to retrieve iterators on the different types of objects (e.g. ACLineSegment) through simple
SPARQL queries. Usually these iterators include just the mrID, or the mrID and name. Then Jena RDF model
and resource functions are used to pull other properties from iterated objects, writing GridLAB-D input along
the way. A future version will rely more heavily on SPARQL queries to do the selection and filtering, as the
preferred pattern for developers working with CIM. In existing code, the EnergySource most closely follows
this new preferred pattern.

Invoke as a console-mode program

Author Tom McDermott

See also: CDPSM_to_GLM.main, CIM User Group, CIM Profile and Queries for Feeder Modeling in
GridLAB-D, GridLAB-D

Fields

baseURI

static final String baseURI
identifies gridlabd

mapNodes

static HashMap<String, GldNode> mapNodes
to look up nodes by name

mapSpacings

static HashMap<String, SpacingCount> mapSpacings
to look up line spacings by name

neg120

static final Complex neg120
Rotates a phasor -120 degrees by multiplication

nsCIM

static final String nsCIM
namespace for CIM; should match the CIM version used to generate the RDF

nsRDF

static final String nsRDF
namespace for RDF

128 Chapter 8. API Documentation

http://www.ucaiug.org/default.aspx
https://github.com/GRIDAPPSD/Powergrid-Models/blob/temcdrm/CIM/CDPSM_RC1.docx
https://github.com/GRIDAPPSD/Powergrid-Models/blob/temcdrm/CIM/CDPSM_RC1.docx
http://www.gridlabd.org
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

pos120

static final Complex pos120
Rotates a phasor +120 degrees by multiplication

ptBaseNomV

Property ptBaseNomV

ptEqBaseV

Property ptEqBaseV

ptEquip

Property ptEquip

ptLevBaseV

Property ptLevBaseV

Methods

AccumulateLoads

static boolean AccumulateLoads(GldNode nd, String phs, double pL, double qL, double Pv, double Qv,
double Pz, double Pi, double Pp, double Qz, double Qi, double Qp)

Distributes a total load (pL+jqL) among the phases (phs) present on GridLAB-D node (nd)

Parameters

• nd – GridLAB-D node to receive the total load

• phs – phases actually present at the node

• pL – total real power

• qL – total reactive power

• Pv – real power voltage exponent from a CIM LoadResponseCharacteristic

• Qv – reactive power voltage exponent from a CIM LoadResponseCharacteristic

• Pz – real power constant-impedance percentage from a CIM LoadResponseCharacteristic

• Qz – reactive power constant-impedance percentage from a CIM LoadResponseCharacter-
istic

• Pi – real power constant-current percentage from a CIM LoadResponseCharacteristic

• Qi – reactive power constant-current percentage from a CIM LoadResponseCharacteristic

• Pp – real power constant-power percentage from a CIM LoadResponseCharacteristic

• Qp – reactive power constant-power percentage from a CIM LoadResponseCharacteristic

8.6. gov.pnnl.gridlabd.cim 129

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

Returns always true

Bus_ShuntPhases

static String Bus_ShuntPhases(String phs, String conn)
appends N or D for GridLAB-D loads and capacitors, based on wye or delta connection

Parameters

• phs – from CIM PhaseCode

• conn – contains w for wye connection and d for delta connection

Returns phs with N or D possibly appended

CFormat

static String CFormat(Complex c)

Parameters

• c – complex number

Returns formatted string for GridLAB-D input files with ‘j’ at the end

Count_Phases

static int Count_Phases(String phs)
from the phase string, determine how many are present, but ignore D, N and S

Parameters

• phs – the parsed CIM PhaseCode

Returns (1..3)

FindBaseVoltage

static double FindBaseVoltage(Resource res, Property ptEquip, Property ptEqBaseV, Property ptLevBa-
seV, Property ptBaseNomV)

Returns the nominal voltage for conduction equipment, from either its own or container’s base voltage. For
example, capacitors and transformer ends have their own base voltage, but line segments don’t.

Parameters

• res – an RDF resource corresponding to a ConductingEquipment instance; we need to find
its base voltage

• ptEquip – an RDF property corresponding to the EquipmentContainer association

• ptEqBaseV – an RDF property corresponding to a possible BaseVoltage association on
the equipment itself

• ptLevBaseV – an RDF property corresponding to the EquipmentContainer’s BaseVoltage
association

• ptBaseNomV – an RDF property corresponding to the nominalVoltage attribute of a CIM
BaseVoltage

130 Chapter 8. API Documentation

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

Returns the nominal voltage as found from the equipment or its container, or 1.0 if not found

FindConductorAmps

static String FindConductorAmps(Model mdl, Resource res, Property ptDataSheet, Property ptAmps)
needs to return the current rating for a line segment ‘res’ that has associated WireInfo at ‘ptDataSheet’, which
in turn has the current rating at ptAmps

TODO - this is not implemented; emitted syntax is for OpenDSS and the function call (below, in main) needs
review

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• res – an RDF resource corresponding to a CIM ACLineSegment

• ptDataSheet – an RDF property corresponding to CIM AssetDatasheet attribute

• ptAmps – an RDF property corresponding to CIM ratedCurrent attribute

Returns unusable OpenDSS input

FirstPhase

static String FirstPhase(String phs)

Parameters

• phs – a parsed CIM PhaseCode

Returns the first phase found as A, B, or C

GLDCapMode

static String GLDCapMode(String s)
translate the capacitor control mode from CIM to GridLAB-D

Parameters

• s – CIM regulating control mode enum

Returns MANUAL, CURRENT, VOLT, VAR

GLD_ID

static String GLD_ID(String arg)
parse the GridLAB-D name from a CIM name, based on # position

Parameters

• arg – the CIM IdentifiedObject.name attribute, not the mrID

Returns the compatible name for GridLAB-D

8.6. gov.pnnl.gridlabd.cim 131

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

GLD_Name

static String GLD_Name(String arg, boolean bus)
convert a CIM name to GridLAB-D name, replacing unallowed characters and prefixing for a bus/node

Parameters

• arg – the root bus or component name, aka CIM name

• bus – to flag whether nd_ should be prepended

Returns the compatible name for GridLAB-D

GetACLineParameters

static String GetACLineParameters(Model mdl, String name, Resource r, double len, double freq, String
phs, PrintWriter out)

for a standalone ACLineSegment with sequence parameters, find GridLAB-D formatted and normalized phase
impedance matrix

TODO - this is always three-phase, so we don’t need all 7 variations from GetSequenceLineConfigurations

•

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• name – the root name of the line segment and its line_configuration

• r – an RDF resource corresponding to a CIM ACLineSegment

• len – the length of the ACLineSegment in feet

• freq – frequency in Hz for converting susceptance to capacitance

• phs – phasing for the written line_configuration (one of 7 variations) that needs to be ref-
erenced

• out – the PrintWriter instance opened from the main program, passed here so that we can
share code in GetSequenceLineConfigurations

Returns the name of the written line_configuration

GetBusName

static String GetBusName(Model mdl, String eq_id, int seq)
finds the bus (ConnectivityNode) name for conducting equipment

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file*

• eq_id – the CIM mrID of the conducting equipment

• seq – equals 1 to use the first terminal found, or 2 to use the second terminal found

Returns the GridLAB-D compatible bus name, or x if not found. As Terminals no longer have
sequence numbers, the ordering of seq is unpredictable, so if there are two we can get bus 1 -
bus 2 or bus 2 - bus 1

132 Chapter 8. API Documentation

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/io/PrintWriter.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

GetBusPositionString

static String GetBusPositionString(Model mdl, String id)
for a bus (ConnectivityNode), search for X,Y geo coordinates based on connected Terminals and equipment

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• id – name of the bus to search from

Returns X,Y coordinates in comma-separated value (CSV) format

GetCableData

static String GetCableData(Model mdl, Resource res)
needs to return underground_line_conductor data in GridLAB-D format

TODO - this is not implemented; the emitted syntax is actually for OpenDSS

•

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• res – an RDF resource corresponding to a CIM CableInfo (not a leaf/concrete class)

Returns unusable OpenDSS input

GetCapControlData

static String GetCapControlData(Model mdl, Resource rCap, Resource ctl)

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• rCap – an RDF resource corresponding to a CIM LinearShuntCompensator (aka capacitor)

• ctl – an RDF resource corresponding to the CIM RegulatingControl that was found at-
tached to the LinearShuntCompensator

Returns the embedded capacitor control data for a GridLAB-D capacitor object

GetEquipmentType

static String GetEquipmentType(Resource r)
find the type of monitored equipment for controlled capacitors, usually a line or the capacitor itself

Parameters

• r – an RDF resource, will have a CIM mrID, should be a LinearShuntCompensator, ACLi-
neSegment, EnergyConsumer or PowerTransformer

Returns cap, line, xf if supported in GridLAB-D; NULL or ##UNKNOWN## if unsupported

8.6. gov.pnnl.gridlabd.cim 133

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

GetGldTransformerConnection

static String GetGldTransformerConnection(String[] wye, int nwdg)
Map CIM connectionKind to GridLAB-D winding connections. TODO: some of the returnable types aren’t
actually supported in GridLAB-D

Parameters

• wye – array of CIM connectionKind attributes per winding

• nwdg – number of transformer windings, also the size of wye

Returns the GridLAB-D winding connection. This may be something not supported in GridLAB-D,
which should be treated as a feature request

GetImpedanceMatrix

static String GetImpedanceMatrix(Model mdl, String name, Property ptCount, Resource r, boolean
bWantSec)

Convert CIM PerLengthPhaseImpedance to GridLAB-D line_configuration

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• name – root name of the line_configuration(s), should be the CIM name

• r – an RDF resource, will have a CIM mrID, should be PerLengthPhaseImpedance

• ptCount – an RDF property for the PerLengthPhaseImpedance.conductorCount

• bWantSec – flags the inclusion of triplex, true except for debugging

Returns the GridLAB-D formatted impedance matrix for a line configuration. We have to write 3
of these in the case of 1-phase or 2-phase matrices. If (by name) it appears to be triplex and
bWantSec is false, nothing will be returned.

GetLineSpacing

static String GetLineSpacing(Model mdl, Resource rLine)
needs to return the line_spacing and wire/cncable/tscable assignments for this rLine in GridLAB-D format

TODO - this is not implemented, the emitted syntax is actually for OpenDSS

•

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• rLine – an RDF resource corresponding to a CIM ACLineSegment that should have an
associated AssetInfo

Returns unusable OpenDSS input

134 Chapter 8. API Documentation

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

GetMatIdx

static int GetMatIdx(int n, int row, int col)
converts the [row,col] of nxn matrix into the sequence number for CIM PerLengthPhaseImpedanceData (only
valid for the lower triangle) *

Parameters

• n – 2x2 matrix order

• row – first index of the element

• col – second index

Returns sequence number

GetPowerTransformerData

static String GetPowerTransformerData(Model mdl, Resource rXf)

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• rXf – an RDF resource corresponding to CIM PowerTransformer; it should have mesh
impedance data

Returns transformer and transformer_configuration objects in GridLAB-D format

GetPowerTransformerTanks

static String GetPowerTransformerTanks(Model mdl, Resource rXf, ResIterator itTank, boolean
bWantSec)

writes a PowerTransformer in GridLAB-D format, in the case where individual tranformer tanks that are con-
nected together in a bank. GridLAB-D supports only 2-winding banks with same phasing on both sides, or
single-phase, center-tapped secondary transformers.

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• rXf – an RDF resource corresponding to a CIM PowerTransformer that uses tank modeling

• itTank – a Jena iterator on the tanks associated with rXf, known to be non-empty before
this function is called

• bWantSec – usually true, in order to include single-phase, center-tapped secondary trans-
formers, which would come to this function

Returns transformer object in GridLAB-D format; the transformer_configuration comes from call-
ing GetXfmrCode

GetPropValue

static String GetPropValue(Model mdl, String uri, String prop)
unprotected lookup of uri.prop value, to be deprecated in favor of SafeProperty

Parameters

8.6. gov.pnnl.gridlabd.cim 135

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

• mdl – an RDF model (set of statements) read from the CIM imput file

• uri – an RDF resource, currently only an EquipmentContainer is used, and it should always
exist

• prop – currently only IdentifiedObject.name is used, and it should always exist

Returns the name of the CIM object

GetRegulatorData

static String GetRegulatorData(Model mdl, Resource rXf, String name, String xfGroup, String bus1,
String bus2, String phs)

Connects a regulator in GridLAB-D format between bus1 and bus2; should be called from GetPowerTrans-
formerTanks. In CIM, a regulator consists of a transformer plus the ratio tap changer, so if such is found,
should call GetRegulatorData instead of just writing the transformer data in GetPowerTransformerTanks. Any
impedance in the regulating transformer will be lost in the GridLAB-D model. Should be called from Power-
Transformers that have RatioTapChangers attached, so we know that lookup will succeed

TODO: implement regulators for tank transformers

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• rXf – an RDF resource corresponding to a CIM PowerTransformer that has a Ratio-
TapChanger associated

• name – the name of the PowerTransformer (already looked up before calling this function)

• xfGroup – the PowerTransformer’s IEC vector group (already looked up before calling
this function)

• bus1 – first bus (ConnectivityNode) on the regulator (already looked up before calling this
function)

• bus2 – second bus (ConnectivityNode) on the regulator (already looked up before calling
this function)

• phs – phases that contain A, B and/or C (already looked up before calling this function)

Returns regulator and regulator_configuration objects in GridLAB-D format

GetSequenceLineConfigurations

static String GetSequenceLineConfigurations(String name, double sqR1, double sqX1, double sqC1,
double sqR0, double sqX0, double sqC0)

For balanced sequence impedance, return a symmetric phase impedance matrix for GridLAB-D. We have to
write 7 variations to support all combinations of 3, 2 or 1 phases used.

Parameters

• name – is the root name for these 7 variations

• sqR1 – positive sequence resistance in ohms/mile

• sqX1 – positive sequence reactance in ohms/mile

• sqC1 – positive sequence capacitance in nF/mile

• sqR0 – zero sequence resistance in ohms/mile

136 Chapter 8. API Documentation

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

• sqX0 – zero sequence reactance in ohms/mile

• sqC0 – zero sequence capacitance in nF/mile

Returns text for 7 line_configuration objects

GetWdgConnection

static String GetWdgConnection(Resource r, Property p, String def)
parse the CIM WindingConnection enumeration

Parameters

• r – an RDF resource, will have a CIM mrID, should be a transformerEnd

• p – an RDF property, will be a CIM attribute, should be connectionKind

• def – default value if property is not found, such as Y

Returns D, Y, Z, Yn, Zn, A or I

GetWireData

static String GetWireData(Model mdl, Resource res)
needs to return overhead_line_conductor data in GridLAB-D format; res is the CIM OverheadWireInfo instance

TODO - this is not implemented; the emitted syntax is actually for OpenDSS

•

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• res – an RDF resource corresponding to CIM OverheadWireInfo

Returns unusable OpenDSS input

GetXfmrCode

static String GetXfmrCode(Model mdl, String id, double smult, double vmult, boolean bWantSec)
Translates a single TransformerTankInfo into GridLAB-D format. These transformers are described with short-
circuit and open-circuit tests, which sometimes use non-SI units like percent and kW, as they appear on trans-
former test reports.

TODO: smult and vmult may be removed, as they should always be 1 for valid CIM XML

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• id – CIM mRID corresponding to a CIM TransformerTankInfo

• smult – scaling factor for converting winding ratings to volt-amperes (should be 1)

• vmult – scaling factor for converting winding ratings to volts (should be 1)

• bWantSec – usually true to include single-phase, center-tapped secondary tranformers,
which come to this function

Returns transformer_configuration object in GridLAB-D format

8.6. gov.pnnl.gridlabd.cim 137

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

GldPrefixedNodeName

static String GldPrefixedNodeName(String arg)
prefix all bus names with nd_ for GridLAB-D, so they “should” be unique

Parameters

• arg – the root bus name, aka CIM name

Returns nd_arg

MergePhases

static String MergePhases(String phs1, String phs2)
accumulate phases without duplication

Phase_Kind_String

static String Phase_Kind_String(String arg)
parses a single phase from CIM SinglePhaseKind

Parameters

• arg – CIM SinglePhaseKind enum

Returns A, B, C, N, s1 or s2

Phase_String

static String Phase_String(String arg)
parses the phase string from CIM phaseCode

Parameters

• arg – CIM PhaseCode enum

Returns some combination of A, B, C, N, s1, s2, s12

SafeBoolean

static boolean SafeBoolean(Resource r, Property p, boolean def)
look up Jena boolean value

Parameters

• r – an RDF resource, will have a CIM mrID

• p – an RDF property, will be a CIM attribute

• def – default value if property is not found

Returns boolean value, or default if not found

138 Chapter 8. API Documentation

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

SafeDouble

static double SafeDouble(Resource r, Property p, double def)
look up Jena double value

Parameters

• r – an RDF resource, will have a CIM mrID

• p – an RDF property, will be a CIM attribute

• def – default value if property is not found

Returns double value, or default if not found

SafeInt

static int SafeInt(Resource r, Property p, int def)
look up Jena integer value

Parameters

• r – an RDF resource, will have a CIM mrID

• p – an RDF property, will be a CIM attribute

• def – default value if property is not found

Returns integer value, or default if not found

SafePhasesX

static String SafePhasesX(Resource r, Property p)
look up Jena phase property

Parameters

• r – an RDF resource, will have a CIM mrID

• p – an RDF property, will be a CIM attribute

Returns phases in string format, or ABCN if not found

SafeProperty

static String SafeProperty(Resource r, Property p, String def)
look up Jena string property

Parameters

• r – an RDF resource, will have a CIM mrID

• p – an RDF property, will be a CIM attribute

• def – default value if property is not found

Returns the property (or default value) as a string

8.6. gov.pnnl.gridlabd.cim 139

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

SafeRegulatingMode

static String SafeRegulatingMode(Resource r, Property p, String def)
parse the CIM regulating control mode enum

Parameters

• r – an RDF resource, will have a CIM mrID

• p – an RDF property, will be a CIM attribute

• def – default value if property is not found

Returns voltage, timeScheduled, reactivePower, temperature, powerFactor, currentFlow, userDe-
fined

SafeResName

static String SafeResName(Resource r, Property p)
for components (not buses) returns the CIM name from r.p attribute if it exists, or the r.mrID if not, in GridLAB-
D format

Parameters

• r – an RDF resource, will have a CIM mrID

• p – an RDF property, will be a CIM attribute

Returns a name compatible with GridLAB-D

SafeResourceLookup

static String SafeResourceLookup(Model mdl, Property ptName, Resource r, Property p, String def)

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• ptName – should be the IdentifiedObject.Name property of the resource we are looking for

• r – an RDF resource, will have a CIM mrID

• p – an RDF property, will be a CIM attribute

• def – default value if property is not found

Returns the GridLAB-D formatted name of a resource referenced by r.p

Shunt_Delta

static boolean Shunt_Delta(Resource r, Property p)
for loads and capacitors, returns true only if CIM PhaseShuntConnectionKind indicates delta

Parameters

• r – an RDF resource, will have a CIM mrID, should be LinearShuntCompensator or Ener-
gyConsumer

• p – an RDF property, will be a CIM attribute for phaseConnection

Returns true if delta connection

140 Chapter 8. API Documentation

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

WirePhases

static String WirePhases(Model mdl, Resource r, Property p1, Property p2)
Returns GridLAB-D formatted phase string by accumulating CIM single phases, if such are found, or assuming
ABC if not found. Note that in CIM, secondaries have their own phases s1 and s2. *

Parameters

• mdl – an RDF model (set of statements) read from the CIM imput file

• r – an RDF resource, will have a CIM mrID, should be something that can have single
phases attached

• p1 – an RDF property, will be a CIM attribute, should associate from a single phase back to
r

• p2 – an RDF property, will be a CIM attribute, should be the single phase instance’s phase
attribute

Returns concatenation of A, B, C, s1 and/or s2 based on the found individual phases

main

public static void main(String[] args)
Reads command-line input for the converter

Parameters

• args – will be CDPSM_to_GLM [options] input.xml output_root

Throws

• java.io.FileNotFoundException – if the CIM RDF input file is not found

Options:

-l={0..1} load scaling factor, defaults to 1

-t={y|n} triplex; y/n to include or ignore secondaries. Defaults to yes. Use no for debugging only, as all
secondary load will be ignored.

-e={u|i} encoding; UTF-8 or ISO-8859-1. No default, so this should be specified. Choose ‘u’ if the CIM file
came frome OpenDSS.

-f={50|60} system frequency; defaults to 60

-v={1|0.001} multiplier that converts CIM voltage to V for GridLAB-D; defaults to 1

-s={1000|1|0.001} multiplier that converts CIM p,q,s to VA for GridLAB-D; defaults to 1

-q={y|n} are unique names used? If yes, they are used as unique GridLAB-D names. If no, the CIM mrID is
de-mangled to create a unique GridLAB-D name, but this option is only implemented for ACLineSegments as
written to some earlier GIS profiles.

-n={schedule_name} root filename for scheduled ZIPloads (defaults to none)

-z={0..1} constant Z portion (defaults to 0 for CIM-defined LoadResponseCharacteristic)

-i={0..1} constant I portion (defaults to 0 for CIM-defined LoadResponseCharacteristic)

-p={0..1} constant P portion (defaults to 0 for CIM-defined LoadResponseCharacteristic)

Example: java CDPSM_to_GLM -l=1 -e=u -i=1 ieee8500.xml ieee8500

Assuming Jena and Commons-Math are in Java’s classpath, this will produce two output files:

8.6. gov.pnnl.gridlabd.cim 141

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/io/FileNotFoundException.html

GridAPPS-D Documentation, Release 1.0

1. ieee8500_base.glm with GridLAB-D components for a constant-current model at peak load. This file
includes an adjustable source voltage and manual capacitor/tap changer states. It should be invoked from a
separate GridLAB-D file that sets up the clock, solver, recorders, etc. For example, these two GridLAB-D
input lines set up 1.05 per-unit source voltage on a 115-kV system:

• #define VSOURCE=69715.065 // 66395.3 * 1.05

• #include “ieee8500_base.glm”

If there were capacitor/tap changer controls in the CIM input file, that data was written to
ieee8500_base.glm as comments, which can be recovered through manual edits.

2. ieee8500_busxy.glm with bus geographic coordinates, used in GridAPPS-D but not GridLAB-D

Cautions: this converter does not yet implement all variations in the CIM for unbalanced power flow.

1. AssetInfo links to WireSpacing, OverheadWireInfo, ConcentricNeutralCableInfo and TapeShieldCable-
Info

2. PerLengthSequenceImpedance has not been tested

3. Capacitor power factor control mode - not in GridLAB-D

4. Capacitor user-defined control mode - not in GridLAB-D

5. Capacitor controlled by load (EnergyConsumer) - need to name loads

6. Line ratings for PerLengthImpedance

7. Dielectric constant (epsR) for cables - not in CIM

8. Soil resistivity (rho) for line impedance - not in CIM

9. Multi-winding transformers other than centertap secondary-not in GridLAB-D

10. Unbalanced transformer banks - not in GridLAB-D

11. Autotransformers have not been tested

12. schedule_name implemented for secondary loads only, primary loads to be done

13. Fuse not implemented

14. Breaker not implemented

15. Jumper not implemented

16. Disconnector not implemented

Throws

• java.io.UnsupportedEncodingException – if the UTF encoding flag is wrong

See also: CDPSM_to_GLM

8.6.2 CDPSM_to_GLM.GldNode

static class GldNode
Helper class to accumulate nodes and loads.

All EnergyConsumer data will be attached to node objects, then written as load objects. This preserves the input
ConnectivityNode names

TODO - another option is to leave all nodes un-loaded, and attach all loads to parent nodes, closer to what
OpenDSS does

142 Chapter 8. API Documentation

http://docs.oracle.com/javase/8/docs/api/java/io/UnsupportedEncodingException.html

GridAPPS-D Documentation, Release 1.0

Fields

bDelta

public boolean bDelta
will add N or D phasing, if not S

bSecondary

public boolean bSecondary
if bSecondary true, the member variables for phase A and B loads actually correspond to secondary phases 1
and 2. For GridLAB-D, these are written to phase AS, BS or CS, depending on the primary phase, which we
find from the service transformer or triplex.

bSwing

public boolean bSwing
denotes the SWING bus, aka substation source bus

name

public final String name
root name of the node (or load), will have nd_ prepended

nomvln

public double nomvln
this nominal voltage is always line-to-neutral

pa_i

public double pa_i
real power on phase A or s1, constant current portion

pa_p

public double pa_p
real power on phase A or s1, constant power portion

pa_z

public double pa_z
real power on phase A or s1, constant impedance portion

8.6. gov.pnnl.gridlabd.cim 143

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

pb_i

public double pb_i
real power on phase B or s2, constant current portion

pb_p

public double pb_p
real power on phase B or s2, constant power portion

pb_z

public double pb_z
real power on phase B or s2, constant impedance portion

pc_i

public double pc_i
real power on phase C, constant current portion

pc_p

public double pc_p
real power on phase C, constant power portion

pc_z

public double pc_z
real power on phase C, constant impedance portion

phases

public String phases
ABC allowed

qa_i

public double qa_i
reactive power on phase A or s1, constant current portion

qa_p

public double qa_p
reactive power on phase A or s1, constant power portion

144 Chapter 8. API Documentation

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

qa_z

public double qa_z
reactive power on phase A or s1, constant impedance portion

qb_i

public double qb_i
reactive power on phase B or s2, constant current portion

qb_p

public double qb_p
reactive power on phase B or s2, constant power portion

qb_z

public double qb_z
reactive power on phase B or s2, constant impedance portion

qc_i

public double qc_i
reactive power on phase C, constant current portion

qc_p

public double qc_p
reactive power on phase C, constant power portion

qc_z

public double qc_z
reactive power on phase C, constant impedance portion

Constructors

GldNode

public GldNode(String name)
constructor defaults to zero load and zero phases present

Parameters

• name – CIM name of the bus

8.6. gov.pnnl.gridlabd.cim 145

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

Methods

AddPhases

public boolean AddPhases(String phs)
accumulates phases present

Parameters

• phs – phases to add, may contain ABCDSs

Returns always true

ApplyZIP

public void ApplyZIP(double Z, double I, double P)
reapportion loads according to constant power (Z/sum), constant current (I/sum) and constant power (P/sum)

Parameters

• Z – portion of constant-impedance load

• I – portion of constant-current load

• P – portion of constant-power load

GetPhases

public String GetPhases()

Returns phasing string for GridLAB-D with appropriate D, S or N suffix

HasLoad

public boolean HasLoad()

Returns true if a non-zero real or reactive load on any phase

RescaleLoad

public void RescaleLoad(double scale)
scales the load by a factor that probably came from the command line’s -l option

Parameters

• scale – multiplying factor on all of the load components

8.6.3 CDPSM_to_GLM.SpacingCount

static class SpacingCount
helper class to keep track of the conductor counts for WireSpacingInfo instances

Number of Conductors is the number of phases (1..3) plus neutrals (0..1)

146 Chapter 8. API Documentation

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

Constructors

SpacingCount

public SpacingCount(int nconds, int nphases)
construct with number of conductors and phases

Parameters

• nconds – number of phases plus neutrals (1..4)

• nphases – number of phase conductors (1..3)

Methods

getNumConductors

public int getNumConductors()

Returns accessor to number of conductors

getNumPhases

public int getNumPhases()

Returns accessor to number of phases

8.6.4 SPARQLcimTest

public class SPARQLcimTest extends Object
This class runs an example SQARQL query against CIM XML

Future versions of GridAPPS-D will rely more heavily on SPARQL queries to do the selection and filtering, as
the preferred pattern for developers working with CIM. This example uses several triples to execute a query on
LinearShuntCompensators (aka capacitors).

Invoke as a console-mode program

Author Tom McDermott

See also: SPARQLcimTest.main

Fields

baseURI

static final String baseURI
identifies gridlabd

nsCIM

static final String nsCIM
namespace for CIM; should match the CIM version used to generate the RDF

8.6. gov.pnnl.gridlabd.cim 147

http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

GridAPPS-D Documentation, Release 1.0

nsRDF

static final String nsRDF
namespace for RDF

Methods

GLD_Name

static String GLD_Name(String arg, boolean bus)
convert a CIM name to GridLAB-D name, replacing unallowed characters

main

public static void main(String[] args)
Reads command-line input for the converter

Parameters

• args – will be SPARQLcimTest [options] input.xml

Options: -e={u|i} encoding; UTF-8 or ISO-8859-1; choose u if input.xml came from OpenDSS

148 Chapter 8. API Documentation

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

CHAPTER 9

License

1. Battelle Memorial Institute (hereinafter Battelle) hereby grants permission to any person or entity lawfully
obtaining a copy of this software and associated documentation files (hereinafter the Software) to redistribute
and use the Software in source and binary forms, with or without modification. Such person or entity may use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and may permit others
to do so, subject to the following conditions:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimers.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Other than as used herein, neither the name Battelle Memorial Institute or Battelle may be used in any form
whatsoever without the express written consent of Battelle.

1. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL BATTELLE OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

General disclaimer for use with OSS licenses

This material was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the United States Department of Energy, nor Battelle, nor any of their employees,
nor any jurisdiction or organization that has cooperated in the development of these materials, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any
information, apparatus, product, software, or process disclosed, or represents that its use would not infringe privately
owned rights.

149

GridAPPS-D Documentation, Release 1.0

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or any agency thereof.

150 Chapter 9. License

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

151

GridAPPS-D Documentation, Release 1.0

152 Chapter 10. Indices and tables

Bibliography

[CIT1] W. H. Kersting, “Radial distribution test feeders,” in 2001 IEEE Power Engineering Society Winter Meeting.
Conference Proceedings (Cat. No.01CH37194), 2001, pp. 908-912 vol.2.

[CIT2] R. F. Arritt and R. C. Dugan, “The IEEE 8500-node test feeder,” in IEEE PES T&D 2010, 2010, pp. 1-6.

[CIT3] M. E. Baran and H. Ming-Yung, “Volt/VAr control at distribution substations,” in IEEE Transactions on Power
Systems, vol. 14, pp. 312-318, 1999.

[CIT4] V. Borozan, M. E. Baran, and D. Novosel, “Integrated volt/VAr control in distribution systems,” in 2001
IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 2001, pp.
1485-1490 vol.3.

[CIT5] K. P. Schneider and J. C. Fuller, “Voltage control devices on the IEEE 8500 node test feeder,” in IEEE PES
T&D 2010, 2010, pp. 1-6.

[CIT6] I. Gorton et al., “GridOPTICS(TM) A Novel Software Framework for Integrating Power Grid Data Storage,
Management and Analysis,” in System Sciences (HICSS), 2013 46th Hawaii International Conference on,
2013, pp. 2167-2176.

[CIT7] S. Ciraci, J. Daily, J. Fuller, A. Fisher, L. Marinovici, and K. Agarwal, “FNCS: a framework for power system
and communication networks co-simulation,” in Proceedings of the Symposium on Theory of Modeling &
Simulation - DEVS Integrative, Tampa, Florida, 2014, pp. 1-8.

[CIT8] D. P. Chassin, J. C. Fuller, and N. Djilali, “GridLAB-D: An agent-based simulation framework for smart
grids,” in Journal of Applied Mathematics, vol. 2014, no. 492320, pp. 1-12, 2014.

153

GridAPPS-D Documentation, Release 1.0

154 Bibliography

Index

A
AccumulateLoads(GldNode, String,

double, double, double, double,
double, double, double, double,
double, double) (Java method), 129

AddPhases(String) (Java method), 146
ApplyZIP(double, double, double) (Java

method), 146

B
baseURI (Java field), 128, 147
bDelta (Java field), 143
bSecondary (Java field), 143
bSwing (Java field), 143
Bus_ShuntPhases(String, String) (Java

method), 130

C
CDPSM_to_GLM (Java class), 128
CFormat(Complex) (Java method), 130
Count_Phases(String) (Java method), 130

F
FindBaseVoltage(Resource, Property,

Property, Property, Property)
(Java method), 130

FindConductorAmps(Model, Resource,
Property, Property) (Java method),
131

FirstPhase(String) (Java method), 131

G
GetACLineParameters(Model, String,

Resource, double, double,
String, PrintWriter) (Java method),
132

GetBusName(Model, String, int) (Java
method), 132

GetBusPositionString(Model, String)
(Java method), 133

GetCableData(Model, Resource) (Java
method), 133

GetCapControlData(Model, Resource,
Resource) (Java method), 133

GetEquipmentType(Resource) (Java method),
133

GetGldTransformerConnection(String[],
int) (Java method), 134

GetImpedanceMatrix(Model, String,
Property, Resource, boolean)
(Java method), 134

GetLineSpacing(Model, Resource) (Java
method), 134

GetMatIdx(int, int, int) (Java method), 135
getNumConductors() (Java method), 147
getNumPhases() (Java method), 147
GetPhases() (Java method), 146
GetPowerTransformerData(Model,

Resource) (Java method), 135
GetPowerTransformerTanks(Model,

Resource, ResIterator, boolean)
(Java method), 135

GetPropValue(Model, String, String)
(Java method), 135

GetRegulatorData(Model, Resource,
String, String, String, String,
String) (Java method), 136

GetSequenceLineConfigurations(String,
double, double, double, double,
double, double) (Java method), 136

GetWdgConnection(Resource, Property,
String) (Java method), 137

GetWireData(Model, Resource) (Java method),
137

GetXfmrCode(Model, String, double,
double, boolean) (Java method), 137

GLD_ID(String) (Java method), 131
GLD_Name(String, boolean) (Java method),

155

GridAPPS-D Documentation, Release 1.0

132, 148
GLDCapMode(String) (Java method), 131
GldNode (Java class), 142
GldNode(String) (Java constructor), 145
GldPrefixedNodeName(String) (Java method),

138
gov.pnnl.gridlabd.cim (package), 127

H
HasLoad() (Java method), 146

M
main(String[]) (Java method), 141, 148
mapNodes (Java field), 128
mapSpacings (Java field), 128
MergePhases(String, String) (Java method),

138

N
name (Java field), 143
neg120 (Java field), 128
nomvln (Java field), 143
nsCIM (Java field), 128, 147
nsRDF (Java field), 128, 148

P
pa_i (Java field), 143
pa_p (Java field), 143
pa_z (Java field), 143
pb_i (Java field), 144
pb_p (Java field), 144
pb_z (Java field), 144
pc_i (Java field), 144
pc_p (Java field), 144
pc_z (Java field), 144
Phase_Kind_String(String) (Java method), 138
Phase_String(String) (Java method), 138
phases (Java field), 144
pos120 (Java field), 129
ptBaseNomV (Java field), 129
ptEqBaseV (Java field), 129
ptEquip (Java field), 129
ptLevBaseV (Java field), 129

Q
qa_i (Java field), 144
qa_p (Java field), 144
qa_z (Java field), 145
qb_i (Java field), 145
qb_p (Java field), 145
qb_z (Java field), 145
qc_i (Java field), 145
qc_p (Java field), 145

qc_z (Java field), 145

R
RescaleLoad(double) (Java method), 146

S
SafeBoolean(Resource, Property,

boolean) (Java method), 138
SafeDouble(Resource, Property, double)

(Java method), 139
SafeInt(Resource, Property, int) (Java

method), 139
SafePhasesX(Resource, Property) (Java

method), 139
SafeProperty(Resource, Property,

String) (Java method), 139
SafeRegulatingMode(Resource, Property,

String) (Java method), 140
SafeResName(Resource, Property) (Java

method), 140
SafeResourceLookup(Model, Property,

Resource, Property, String) (Java
method), 140

Shunt_Delta(Resource, Property) (Java
method), 140

SpacingCount (Java class), 146
SpacingCount(int, int) (Java constructor), 147
SPARQLcimTest (Java class), 147

W
WirePhases(Model, Resource, Property,

Property) (Java method), 141

156 Index

	Overview
	Conceptual Design Summary
	Architecture
	Definition of Terms
	References
	Release History
	Contact Us

	Installing GridAPPS-D
	Requirements
	Docker and prerequisite install on OS X
	Clone or download the repository
	Install Docker on Ubuntu
	Start the docker container services
	Start gridappsd
	Exiting the container and stopping the containers
	Restarting the containers

	Using GridAPPS-D
	Start GridAPPS-D platform
	Start a Simulation
	Stop GridAPPS-D platform
	Adding Events
	Uploading Model into Blazegraph
	Inserting Measurements into Blazegraph
	Using Platform API
	Powergrid Model API
	Configuration File API
	Logging API
	Simulation API
	Timeseries API
	Services
	Hosting Application

	System Configurations
	GridAPPS-D Development Resources
	Design
	Eclipse IDE Setup
	Execution Workflow
	CIM Documentation
	Platform UML Diagrams
	CIM Validation

	Data Model
	IEEE 8500-Node Test Feeder

	Integrated Applications
	Volt-var Optimization (VVO)
	Visualization
	State Estimator Service
	Model Validation Application
	Transactive Systems Application
	Distribution Optimal Power Flow for Real-Time Setpoint Dispatch
	Short-Term Grid Forecasting
	Solar Forecasting Application

	API Documentation
	GridAPPS-D
	GOSS
	FNCS
	VVO
	GridLAB-D
	gov.pnnl.gridlabd.cim

	License
	Indices and tables
	Bibliography
	Index

